Análise de performance de fundos de investimento do tipo previdência complementar aberta no Brasil.

Eder Antônio Porto

Orientador: Prof. Dr. Aureliano Angel Bressan

Belo Horizonte
Outubro/2011
Eder Antônio Porto

ANÁLISE DE PERFORMANCE DE FUNDOS DE INVESTIMENTO DO TIPO PREVIDÊNCIA COMPLEMENTAR ABERTA NO BRASIL.

Monografia apresentada ao Centro de Pós-Graduação e Especialização em Estatística da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Especialista em Estatística.

Orientador: Prof. Dr. Aureliano Angel Bressan

Belo Horizonte – MG
Universidade Federal de Minas Gerais
2011
AGRADECIMENTOS

Primeiramente agradeço à Deus por todas as graças alcançadas em minha vida.

À minha querida esposa Graziella, por seu amor e companheirismo durante toda essa longa jornada, que se estendeu desde o ingresso no curso de pós-graduação em estatística, até a realização e defesa desta monografia.

À minha querida mãe, meu querido pai e irmão, Srª. Maria José e Sr. Alberto e Pablo, sozinho não sou ninguém, juntos, fazemos toda diferença, amo muito vocês. Podem acreditar, vocês fazem toda diferença em minha vida.

Aos professores do curso de pós-graduação em estatística da UFMG, e em especial ao meu orientador Dr. Aureliano Bressan, pela compreensão e ajuda na conclusão deste trabalho monográfico.

Ao meu amigo, e colega de trabalho, Fernando Pedrosa, que sempre me incentivou para conclusão desse curso.
SUMÁRIO

1. Introdução ... 11
 1.1. Justificativa e Colocação do Problema .. 12
 1.2. Objetivos .. 13
 1.2.1. Objetivo Geral .. 13
 1.2.2. Objetivos Específicos .. 14

2. Previdência Complementar Aberta no Brasil ... 15
 2.1. O Sistema Financeiro Nacional ... 15
 2.2. A Previdência Social .. 16
 2.3. A Previdência Complementar Aberta .. 20
 2.4. A Estrutura do Sistema Previdenciário no Brasil .. 23
 2.4.1. Entidade Aberta de Previdência Complementar (EAPC) .. 23
 2.4.2. Entidade Fechada de Previdência Complementar (EFPC) ... 24

3. Fundamentação Teórica ... 25
 3.1. Medidas Descritivas e de Dispersão ... 25
 3.2. A Relação Retorno e Risco .. 30
 3.3. Gestão de Riscos de Mercado ... 31
 3.3.1. Risco de Mercado Absoluto e Risco de Mercado Relativo .. 31
 3.3.2. A Importância das Medidas de Risco de Mercado .. 31
 3.4. Modelo de Fator - CAPM ... 32
 3.4.1. Primícias do Modelo CAPM .. 32
 3.4.2. O Coeficiente Beta .. 33
 3.4.3. Capital Asset Pricing Model (CAPM) .. 34
 3.5. Avaliação de Performance de Fundos de Investimentos .. 37
 3.5.1. Seleção de Ativos e Market Timing .. 37
 3.5.2. Medidas Clássicas de Performance de Carteiras ... 38
 3.5.2.1. A Razão de Sharpe ... 38
 3.5.2.2. A Razão de Treynor .. 41

4. Metodologia ... 43
 4.1. Abordagem .. 43
 4.2. Tipo de Pesquisa .. 43
 4.3. Unidade de Análise .. 43
 4.4. Instrumento de Coleta de Dados ... 43
4.5. Amostra ... 44
4.6. Tratamentos dos Dados ... 44
4.7. Procedimentos Empíricos.. 45

5. Análise de Resultados .. 46
5.1. Análise Descritiva dos Dados ... 46
5.2. Medidas de Dispersão dos Dados ... 50
5.3. Retorno Ajustado ao Risco .. 55
 5.3.1. Resultado do Índice de Sharpe .. 55
 5.3.2. Resultado do Índice de Treynor ... 56
5.4. Resultado dos Retornos Esperados ... 61

6. Conclusão .. 62

7. Referências Bibliográficas ... 65

8. Anexo ... 68
LISTA DE EQUAÇÕES

Equação 1 – Taxa de Retorno Efetivo do Fundo de Investimento Previdenciário 25
Equação 2 – Taxa de Retorno Efetivo do Benchmark .. 26
Equação 3 – Variância do Fundo de Investimento .. 26
Equação 4 – Coeficiente de Variação .. 27
Equação 5 – Variância da Carteira de Investimento .. 27
Equação 5.1 – Variância da Carteira de Investimento (opção) 27
Equação 6 – Taxa de Retorno Esperado da Carteira de Investimento Previdenciário ... 28
Equação 7 – Covariância entre os Retornos Efetivos .. 28
Equação 8 – Correlação entre os Retornos Efetivos ... 28
Equação 9 – Equação da Regressão Linear Simples .. 29
Equação 10 – Equação do Beta ... 33
Equação 10.1 – Equação do Beta igual a 1 ... 34
Equação 11 – Equação CAPM .. 35
Equação 12 – Equação da Decomposição do Risco ... 35
Equação 13 – Razão de Sharpe .. 38
Equação 13.1 – Equação de Sharpe .. 39
Equação 14 – Razão de Treynor ... 41
Equação 14.1 – Equação de Treynor ... 41
Equação 15 – Cálculo do Excesso de Retorno ... 46
LISTA DE FIGURAS

Figura 1 - Correlação Renda Fixa..51
Figura 2 - Correlação Renda Variável...54
LISTA DE GRÁFICOS

Gráfico 1 - Sistema Público Previdenciário Brasileiro - Valor Médio dos Benefícios em Salários Mínimos

Gráfico 2 - União x INSS (Per Capita x Subsídio x Beneficiários)

Gráfico 3 - Crescimento no Segmento Previdência Complementar Aberta

Gráfico 4 - Gráfico de Dispersão de duas Variáveis e Reta de Regressão

Gráfico 5 - Gráfico de Sharpe

Gráfico 6 - Gráfico de Treynor

Gráfico 7 - Gráfico Scatterplot de Renda Fixa vs CDI - Jan/07 à Jul/10

Gráfico 8 – Gráfico Scatterplot de Renda Variável vs IBOVESPA – Jan/07 à Jul/10
LISTA DE ORGANOGRAMAS

Organograma 1 - Estrutura Básica do Sistema de Previdência no Brasil.......................... 16
LISTA DE TABELAS

Tabela 2 - Divisão dos Fundos Previdenciários Privados (AMOSTRA)..........................44
Tabela 3 - Análise Descritiva dos Retornos Mensais de RF1, RF2, RF3, RF4 e CDI........47
Tabela 4 - Análise Descritiva dos Retornos Mensais de RV e IBOVESPA......................49
Tabela 5 - Cálculo P-Value Anderson Darling – Normalidade49 / 50
Tabela 6 - Medidas de Dispersão de RF1, RF2, RF3 RF4 e CDI50
Tabela 7 - Correlação Parcial e P-Value - RF1 x RF2, RF3, RF4 e CDI..........................52
Tabela 8 - Correlação Parcial e P-Value – RF2 x RF1, RF3, RF4 e CDI...........................52
Tabela 9 - Correlação Parcial e P-Value – RF3 x RF2, RF1, RF4, CDI............................53
Tabela 10 - Correlação Parcial e P-Value – RF4 x RF1, RF2, RF3, CDI..........................53
Tabela 11 - Medidas de Dispersão de RV e IBOVESPA...53
Tabela 12 - Correlação Parcial e P-Value – RV x CDI e IBOVESPA..............................55
Tabela 13 - Índice de Sharpe..56
Tabela 14 - Índice de Treynor..60
Tabela 15 - Retornos Esperados dos Fundos Previdenciários via Modelo CAPM.........61
Tabela 16 - AMOSTRA – Retorno Mensal Efetivo de F.I.P. ...69 / 70
1. INTRODUÇÃO

O tema principal desta pesquisa, avaliação de *performance* de fundos de investimento previdenciários de entidades financeiras de previdência complementar aberta, tem se tornado um assunto bastante discutido no país. Trata-se de um tema complexo e muito amplo, pois estruturalmente, engloba diversos setores da economia, tais como: sistema financeiro nacional, previdência social e a previdência complementar.

Este trabalho visa analisar questões importantes relativas à administração de recursos financeiros de terceiros, por entidades previdenciárias privadas, e abordar questões que justificam uma *performance* considerável dos administradores de carteiras aos recursos financeiros a eles confiados. A administração desses recursos traz reflexos diretos e indiretos tanto ao setor econômico, quanto no social, uma vez que essas entidades financeiras precisam cumprir suas obrigações previdenciárias com os beneficiários no futuro.

O volume de investimentos no setor é proporcional ao número de investidores que tem aumentado ano a ano. A movimentação de recursos financeiros é muito grande, e por isso, os bancos e as seguradoras, denominados neste trabalho como entidades financeiras, contam com profissionais competentes, capazes de prestar serviços personalizados e sofisticados. Os recursos financeiros capitalizados por essas entidades, mediante pagamento de mensalidades dos segurados/cotistas, posteriormente são reinvestidos em imóveis, renda fixa, renda variável, entre outros.

O objetivo principal do administrador de carteiras de investimento é maximizar a rentabilidade e minimizar o risco dessas carteiras. Todo trabalho desenvolvido por um administrador de carteira de fundos de investimento é avaliado mediante *performance* da carteira de investimentos que está sob sua gestão. Resumidamente, pode-se dizer que a idéia principal da análise de *performance* fundamenta-se mediante comparação entre o trabalho
desenvolvido pelo administrador e o retorno oferecido pela carteira em relação ao benchmark\(^1\) específico.

A análise de performance de uma carteira de investimento pode ser avaliada sob diferentes ângulos pelos administradores, cada um com seu critério específico. Este trabalho monográfico avaliará a performance de carteiras de fundos de investimento previdenciários de entidades financeiras privadas, mediante o modelo CAPM – Capital Asset Pricing Model, utilizando como critério de comparação um benchmark de mercado específico, sendo o CDI e o IBOVESPA. Serão usados também índices derivados do CAPM, como Sharpe e Treynor, para qualificar quais fundos de investimento previdenciários conseguiram maior ganho.

1.1. Justificativa e Colocação do Problema

As justificativas para realização desta pesquisa são fundamentadas por meio dos seguintes questionamentos:

- **Q1** – Por que estudar fundos de investimento do tipo previdência complementar aberta?
- **Q2** – Por que avaliar a performance desses fundos de previdência complementar aberta?

As respostas a estes questionamentos deverão ser respondidas no final deste trabalho, e representarão de forma resumida as premissas necessárias para realização deste estudo acadêmico baseado no contexto brasileiro.

O principal motivo para realização desta pesquisa, comparar a performance de alguns fundos de investimento do tipo previdência complementar aberta no Brasil, resume-se no fato de ser um assunto pouco explorado academicamente no país; no entanto, assim como os fundos de investimento convencionais, merece uma atenção especial.

\(^1\) Conforme consulta eletrônica realizada em 24 de janeiro de 2011, através do site <http://pt.wikipedia.org.br>, benchmark é um indicador que dá a referência de performance que cada fundo busca acompanhar. Os fundos de renda fixa costumam ter como ponto de referência o certificado de depósito interbancário (CDI), já os fundos de renda variável possuem como principal benchmark o índice IBOVESPA.
Conforme descrito por Haugen (2000), retornos passados não são garantia de retornos futuros. Portanto, avaliar a *performance* de carteiras de fundos de investimento ou fundos previdenciários no mercado de capitais não é tarefa fácil. Uma das principais dificuldades encontradas é a grande volatilidade de informações no mercado global, onde se destaca, principalmente, os setores econômico e financeiro. Neste sentido, a estatística é uma grande aliada de profissionais do mercado, pois através dela é possível, ao menos, analisar a *performance* dos fundos pesquisados. Outro problema é a grande dificuldade em conseguir informação sobre o assunto.

Esta pesquisa analisa a *performance* dos fundos de investimento previdenciários de acordo com a experiência passada dos mesmos, não com o objetivo de se identificar a rentabilidade futura dos fundos previdenciários, mas com a intenção de se avaliar o grau de eficiência dos gestores do fundo. Desta forma, é possível realizar uma separação por eficiência, identificando os fundos estudados de maior e de menor rentabilidade, apontando aqueles com tendência a obterem melhor *performance* futura, em função da competência atual de seus gestores.

Nesse contexto, o problema proposto para essa pesquisa será: *analisar apenas a performance passada dos fundos de investimento previdenciário é suficiente para se ter percepção consistente sobre a administração do plano de previdência privada?* Ou seja, baseando-se apenas na avaliação da *performance* passada dos fundos da entidade de previdência selecionada, é possível avaliar também o grau de eficiência dos respectivos gestores?

1.2. Objetivos

Através dos objetivos, geral e específico, é possível entender a sequência desta pesquisa e, no decorrer do trabalho, encontrar uma conclusão para o problema proposto.

1.2.1. Objetivo Geral

O objetivo geral deste trabalho monográfico foi selecionar cinco fundos previdenciários do tipo previdência complementar aberta e comparar a *performance* dos mesmos no período compreendido entre janeiro de 2007 a julho 2010.
1.2.2. Objetivos Específicos

Um dos objetivos específicos deste trabalho monográfico é abordar brevemente o sistema financeiro e também a parte estrutural da previdência social brasileira, retratando informações relevantes sobre o sistema previdenciário e apontando fatos considerados críticos na estrutura do sistema.

Outro objetivo, também específico, é analisar a performance dos fundos previdenciários selecionados, avaliando o retorno mensal dos respectivos fundos, mediante cálculos estatísticos específicos de volatilidade, que serão usados como caracterizadores do risco dos retornos. Em seguida, será realizado cálculo de correlação dos retornos dos fundos previdenciários em relação aos benchmarks específicos, nesse caso o Certificado de Depósito Interbancário-CDI para o ativo livre de risco, e o IBOVESPA representando a carteira de mercado. Para finalizar, será calculada a razão de Sharpe e Treynor, índices que serão usados como parâmetros na análise de performance da carteira dos fundos previdenciários.
2. PREVIDÊNCIA COMPLEMENTAR ABERTA NO BRASIL

A previdência complementar aberta no Brasil é um assunto muito discutido e que está em alta atualmente. O país vive um momento econômico muito bom, em plena expansão comercial e com sua economia aquecida, o que acarreta na expansão e crescimento de diversos setores econômicos, sendo um deles o mercado segurador.

Falar em previdência complementar no Brasil sem tocar na parte estrutural da previdência social é praticamente impossível. Entender a base do sistema público é um pré-requisito para se falar de previdência complementar. Portanto, na parte inicial deste trabalho, serão abordados os seguintes tópicos:

- Sistema Financeiro Nacional;
- Previdência Social;
- Previdência Complementar Aberta.

2.1. O Sistema Financeiro Nacional

De uma maneira simplificada e bastante resumida pode-se dizer que conforme Art. 192 da Constituição Federal brasileira, denominada no decorrer deste trabalho como CF 192, o sistema financeiro nacional é estruturado de forma a promover o desenvolvimento equilibrado do país e servir aos interesses da coletividade.

O sentido de coletividade citado no parágrafo acima, em junção com o sistema financeiro, especificamente o mercado de ações ou títulos, sejam eles títulos públicos ou privados, é muito importante para a economia de um país, e, portanto, para a população deste país. Através dessa união, pessoas do mundo inteiro, das mais diversas culturas e nacionalidades, negociam seus interesses individuais e coletivos, com um objetivo intrínseco de obtenção de lucro a curto, médio ou longo prazo.

Sabe-se, que nem sempre esse objetivo é alcançado com pleno êxito, e a razão desse insucesso, se formaliza simplesmente pelas complexas, e muitas vezes imprevisíveis
oscilações do mercado econômico e financeiro, a qual se atribui a responsabilidade a um fator denominado de risco.

Nota-se, portanto, que oscilações mercadológicas são capazes de mover toda trajetória de desenvolvimento de um país, e no contexto brasileiro não foi diferente. Períodos de instabilidade econômica, atrelados à alta inflação, taxa de juros elevada, juntamente com a corrupção são alguns dos fatores que se mantiveram, e alguns ainda se mantêm, em evidência durante muitos anos no país. O certo é que a hiperinflação foi controlada por diversos fatores, sendo um deles, a criação do Plano Real em meados do ano de 1994. Este processo influenciou muito a retomada ao crescimento econômico do Brasil.

2.2. A Previdência Social

No Organograma 1, observa-se a estrutura previdenciária brasileira composta sob três regimes, sendo eles:

Cada regime de previdência tem características próprias e focos específicos de atuação, como caráter público ou privado, filiação obrigatória ou facultativa e regime financeiro, entre outros.

A CF, através de seu Art. 201, prevê que a previdência social deve ser organizada sob a forma de regime geral de previdência, de caráter público, contributivo, e de filiação obrigatória, para trabalhadores registrados pela Consolidação das Leis Trabalhistas – (CLT), através de regime financeiro de caixa, operado pelo Instituto Nacional do Seguro Social - (INSS).
Sob o conteúdo técnico do RGPS, a CF determina que sejam analisados critérios que preservem o equilíbrio financeiro e atuarial do grupo, para que sejam proporcionados serviços aos segurados.

A previdência social possui logicamente objetivos definidos, Pimentel (2003) cita dois grandes objetivos como primordiais, são eles:

- Garantir a reposição de renda de seus segurados;
- Evitar a pobreza entre as pessoas, que por contingências demográficas, biológicas ou acidentais, não podem participar do processo de produção da riqueza nacional por meio do mercado de trabalho.

No entanto, Pimentel (2003) ressalta também que o sistema de previdência social brasileiro vive um momento crítico, resultante de mudanças sociais, culturais e de vida da população. Afirma que atualmente ocorre um processo de diminuição da taxa de natalidade no Brasil, e por conta das novas tecnologias, das melhorias de saneamento básico e da qualidade de vida, os brasileiros estão vivendo mais.

Todo contexto do parágrafo acima pode ser observado em alguns dos dados contidos na TAB. 1:

<table>
<thead>
<tr>
<th>Taxa Bruta de Mortalidade (por mil)</th>
<th>Taxa Bruta de Natalidade (por mil)</th>
<th>Expectativa de Vida (idade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>1970</td>
<td>1990</td>
<td>2009</td>
</tr>
<tr>
<td>10%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>1970</td>
<td>1990</td>
<td>2009</td>
</tr>
<tr>
<td>35%</td>
<td>24%</td>
<td>16%</td>
</tr>
<tr>
<td>1970</td>
<td>1990</td>
<td>2009</td>
</tr>
<tr>
<td>59</td>
<td>66</td>
<td>72,9</td>
</tr>
</tbody>
</table>

Especificamente, na coluna (3), observa-se que em 1970 a expectativa de vida de um cidadão brasileiro era de 59 anos, saltando para 72,9 anos em 2009. Ou seja, em apenas 39 anos, observa-se um percentual de crescimento na expectativa de vida dos brasileiros de 19,06%.
A TAB. 1 mostra também a taxa bruta de mortalidade e natalidade, ambas medidas por mil habitantes. Elas representam o número total de óbitos e nascimento da população residente em determinado espaço geográfico no período, calculado por mil habitantes.

Taxas elevadas de mortalidade e natalidade estão associadas às condições socioeconômicas precárias, e aos aspectos culturais da população, sendo assim, como se observa redução de ambas as taxas no período de 1970 a 2009, deduz-se que os cidadãos brasileiros estão usufruindo melhores condições socioeconômicas, e culturais.

Outro ponto importante observado é a média de benefícios concedidos aos dois sistemas de aposentadoria do país. No GRAF. 1 verifica-se um comparativo com base em dados divulgados em setembro do ano de 2002, e apresenta a transformação da média das aposentadorias dos aposentados vinculados ao INSS e dos servidores públicos federais, em salários mínimos, conforme abaixo:

![Gráfico 1](image_url)

GRÁFICO 1: Sistema Público Previdenciário Brasileiro, Valor Médio dos Benefícios em Salários Mínimos – Set./02.

Pimentel (2003) menciona que em novembro de 2002, eram 21,1 milhões de aposentados no INSS, recebendo em média 1,8 salários mínimos, enquanto que a renda média dos aposentados da União era de 59,3 salários mínimos.

Quando se avalia o regime geral de previdência social de forma isolada, onde estão os aposentados advindos da iniciativa privada, considerando aposentados do meio urbano e rural, percebe-se que se trata de um programa social complexo e que em sua totalidade é muito
abrangente, atendendo grande parte da população no que se refere a serviços assistenciais via INSS.

Berzoini (2003) diz que o sistema previdenciário urbano do INSS não é estruturalmente deficitário: bem administrado e com a economia crescendo, ele é potencialmente equilibrado, ou até superavitário. Cita que mediante uma postura correta na cobrança dos sonegadores, no combate à fraude, e à sonegação de impostos, além de uma gestão tecnológica adequada dos dados do INSS, é possível manter o sistema em equilíbrio.

Portanto, considerar o sistema previdenciário brasileiro simplesmente como deficitário não é uma decisão justa, o problema está em segmentos distintos, ou seja, é preciso contornar situações por segmentos, sendo eles: Público, Rural e Urbano.

Quanto ao desequilíbrio financeiro do sistema previdenciário, Berzoini (2003) diz que o rombo do setor público é três vezes maior do que o apresentado no regime geral, ou seja, cerca de R$ 50 bilhões, o que representava cerca de 4,1% do PIB para o ano de 2000. Através do GRAF. 2 observa-se a estrutura da previdência social e pública de maneira macro, ou seja, com a inclusão dos três segmentos listados no parágrafo acima:

![Gráfico 2: Estrutura União x INSS (Per Capita x Subsídio x Beneficiários)/02 - Valores em Milhões.](image)

No GRAF. 2, na barra União, vemos que a parte relativa aos Beneficiários é muito pequena, pois representa apenas 950 mil beneficiários, enquanto que no INSS, a barra é muito extensa,
pois representa 19 milhões de beneficiários. Quanto aos subsídios do Governo, destinados ao equilíbrio do sistema, observa-se que foram 22 bilhões de reais para a União, e 17 bilhões para o INSS. O outro fator importante mostrado é o valor per capita, ou seja, quanto se gasta com cada cidadão, na União se gasta em média R$ 23.157,00, enquanto no INSS, se gasta em média R$ 894,00. Em termos de gastos com subsídio, é importante dizer, que no INSS está todo o setor rural, e que se estivesse somente o setor urbano, o subsídio praticamente desapareceria.

2.3. A Previdência Complementar Aberta

Conforme Peres (2008), somente no final do século XVIII e início do século XIX ocorreram algumas iniciativas para se instituir planos de previdência no Brasil. Entre as principais iniciativas, destacamos a criação do Montepio Geral de Economia dos Servidores - (MONGERAL), criado em 1835.

Segundo Peres (2008), até o início da década de oitenta, os planos de previdência disponíveis ao público eram administrados em sua maior parte, por entidades sem fins lucrativos, e ligados a setores de atividades relativas ao funcionalismo público, ou outras atividades relacionadas às profissões chamadas liberais.

Ainda na década de oitenta, com a criação de regulamentação específica no segmento, verificou-se a introdução de novos planos previdenciários no mercado, e consequentemente, a criação de administradores especializados. As entidades financeiras, também se estruturaram, para operar sob essa nova forma de regulamentação.

Definição dada às Entidades Abertas de Previdência Privada (EAPP), que comercializavam planos previdenciários complementares e pecúlio ou renda anteriormente à regulamentação do setor através da Lei nº 6.435, de 1977.

O Art. 202 CF estabelece, que o regime de previdência complementar seja de caráter privado, facultativo, organizado de forma autônoma em relação ao RGPS, baseado na constituição de reservas, que garantam o benefício contratado, e regulado por Lei Complementar 109, de 29 de maio de 2001.

Povoas (1985) descreve a necessidade da previdência complementar aberta no Brasil, e atribui os riscos sociais\(^4\) como peças fundamentais da necessidade desse sistema privado. Afirma que a previdência complementar tem o papel de cumprir os vazios deixados pela previdência social.

Baseando-se no comentário acima, percebe-se que o domínio previdenciário na satisfação das necessidades dos cidadãos é tratado com distinção entre os dois sistemas, o público e privado. Ou seja, parte é preenchida pela organização, e mecanismos da previdência social e assistência social, e a parte restante, suprida pela previdência complementar, que possui caráter facultativo. Ainda assim, não existem fronteiras rígidas entre os dois sistemas.

Povoas (1985) descreve que num futuro próximo, a tendência, é que a previdência complementar, tenha suas dimensões abrangidas cada vez mais, com o objetivo de se completar a satisfação plena, das reais necessidades previdenciárias de todo cidadão.

Galiza (2001) reforça com fatos o comentário acima, e diz que nos próximos anos, podemos esperar que o mercado de previdência complementar aberta no Brasil seja um dos setores mais dinâmicos e promissores da nossa economia, cita ainda três fatores preponderantes para que isso ocorra:

- Para os trabalhadores do setor privado, principalmente aqueles que possuem uma renda média que supere o teto assumido pelo INSS, a previdência pública não é

\(^{4}\) Povoas (1985) define como riscos sociais: o desemprego, as doenças, dentre outros.
satisfatória, pois certamente terão perda considerável de renda quando da aposentadoria;

- Com a estabilidade monetária advinda pelo Plano Real, ocorreram dois momentos importantes para o mercado de seguros e previdência no Brasil: (1) melhora na distribuição de renda entre a população, e consequentemente, favorecendo a demanda por produtos com característica de poupança, mas que fossem baratos; (2) aumento da confiança na estabilidade da moeda, proporcionando o interesse a contratos de longo prazo, como financiamento imobiliário, planos de previdência complementar aberta, entre outros;

- Do ponto de vista da política econômica do país, o Governo mostra sinais, de que deseja estimular o interesse do consumidor, no segmento de previdência complementar.

No contexto mercadológico dos três pontos apresentados acima, o GRAF. 3 apresenta a evolução do setor de previdência complementar aberta no período de 1992 a 1996:

Nota-se através do GRAF. 3, que no ano de 1994, coincidentemente, ano da mudança do sistema monetário para Plano Real, o quadro de composição de reserva do setor de previdência complementar aberta mais que duplicou, quando comparado aos anos de 1992 e 1993, e que a partir de 1994 até 1996, tem-se crescimento considerável do segmento.

A base de funcionamento dos planos de previdência complementar se estabelece de forma similar à estruturação dos chamados fundos de investimento, ou seja, ambos são considerados
ativos financeiros, e estão disponíveis para comercialização no mercado de capitais, sendo consideradas formas alternativas de aplicações financeiras.

A construção de um plano de previdência complementar se dá através de diversos fatores, sendo um deles, a criteriosa seleção, de um seletos conjunto de títulos financeiros, que comporão a carteira de investimento do plano da entidade financeira.

Quanto ao funcionamento dos planos de previdência complementar, todo o dinheiro aplicado pelos segurados no respectivo plano, é convertido em cotas aos segurados/cotistas, que passam a ser proprietários de partes da carteira, proporcionais ao capital investido. O valor da cota é atualizado diariamente, e o cálculo do saldo do segurado/cotista é realizado multiplicando o número de cotas adquiridas pelo valor da cota no dia.

2.4. Estrutura Geral do Sistema de Previdência no Brasil

Conforme Povoas (1985), a previdência complementar e a previdência social têm métodos operacionais diferentes, cita como exemplo que as crises da previdência social são resolvidas através de decretos, enquanto na previdência privada a solução depende da capacidade financeira das pessoas, uma é vinculada ao INSS, enquanto a outra subordinada a SUSEP.

2.4.1. Entidades Abertas de Previdência Complementar (EAPC)

As entidades abertas de previdência complementar são aquelas constituídas unicamente sob a forma de sociedade anônima, com fins lucrativos, que tem como objetivo principal, instituir planos que podem ter coberturas de morte, invalidez ou sobrevivência.

A Lei Complementar 109/01 permitiu que as sociedades seguradoras que operem exclusivamente no ramo de seguros de pessoas sejam autorizadas a comercializar planos de previdência complementar.

Os planos das entidades abertas podem ser contraídos sob a forma individual ou coletiva. Os planos individuais são aqueles acessíveis a quaisquer pessoas físicas, enquanto os planos coletivos são aqueles destinados a pessoas físicas vinculadas, diretas ou indiretamente, a uma
pessoa jurídica contratante, que pode participar do custeio do plano, conforme disposições constantes no contrato celebrado entre a pessoa jurídica contratante, e a entidade aberta.

As EAPC, economicamente, funcionam como formadoras de poupança, proporcionando renda futura aos segurados/cotistas, cujo valor dependerá do grau de eficiência dos gestores do plano de previdência complementar, na administração da carteira de investimentos.

2.4.2. Entidades Fechadas de Previdência Complementar (EFPC)

As entidades fechadas de previdência complementar ou privadas são aquelas organizadas sob a forma de fundação, ou sociedade civil, sem fins lucrativos, mais conhecidos como fundos de pensão.

Apenas para fins de informação, estão disponíveis alguns exemplos de fundos de pensão fechados através do site http://www.mps.gov.br, acessível em maio de 2011, alguns deles são: Petros (Petrobrás), Braslight (Light), Sistel (Telebrás), e Real Grandeza (Furnas Centrais Elétricas), entre vários outros.
3. FUNDAMENTAÇÃO TEÓRICA

Primeiramente serão abordadas as definições e diferenças básicas entre fundos de investimentos previdenciários, e em seguida, abordados métodos de avaliação de performance, utilizados na gestão de riscos de mercado, e administração de recursos de terceiros, onde se cita o uso do CAPM e de índices como Sharpe e Treynor.

3.1. Medidas Descritivas e de Dispersão

Inicialmente, conforme Varga (1999) foi calculada a taxa de retorno mensal de cada fundo de investimento, mediante valor da cota do respectivo fundo de investimento no período de tempo t, dividido pelo valor da cota no período $t - 1$, menos um, conforme equação 1:

$$ R_t = \frac{Q_t}{Q_{t-1}} - 1 $$

Sendo:
- $R_t =$ Taxa de retorno efetiva do fundo de investimento no período t;
- $Q_t =$ Valor da quota do fundo de investimento no período t;
- $Q_{t-1} =$ Valor da quota do fundo de investimento no período $t - 1$.

A partir de (R_t), é possível agrupar os dados mensalmente, para em seguida, construir tabelas, gráficos ou histogramas, que proporcionarão idéias mais claras, de como esses resultados estão distribuídos.

Outra medida que precisou ser calculada foi a taxa de retorno mensal do índice Bovespa. Como critério de cálculo na obtenção dos resultados, seguiu-se a notação algébrica da

5 Conforme ANEXO (pág. 69).
equação 2, e obtiveram-se os retornos mensais do IBOVESPA no período, posteriormente agrupou-se os resultados junto ao ANEXO.

\[R_{mt} = \frac{Ibov_{t} - Ibov_{t-1}}{Ibov_{t-1}} \]

(2)

Sendo:

\(R_{mt} \) = Taxa de retorno efetiva do benchmark no período \(t \);

\(Ibov_{t} \) = Valor do benchmark no período \(t \);

\(Ibov_{t-1} \) = Valor do benchmark no período \(t - 1 \).

Através do ANEXO, foram calculadas as seguintes medidas descritivas: mediana, 1º e 3º quartis, coeficiente de variação, entre outras medidas. No cálculo da mediana, desde que os dados estejam ordenados de forma crescente, ou decrescente, representa resumidamente, um valor para o qual, metade dos dados é menor do que ele, e a outra metade, maior do que ele.

Já os quartis, dividem o conjunto de dados em quatro partes iguais, sendo a mediana, a responsável por dividir o conjunto em duas partes iguais. O primeiro quartil tem 25% dos dados inferiores a ele, e 75% superiores a ele, já o terceiro quartil, tem 75% dos dados inferiores a ele, e 25% superiores.

A parte de risco de um fundo de investimento costuma ser analisada pelo desvio-padrão desse fundo, ou seja, mediante análise de retorno. Sendo o desvio-padrão, a raiz quadrada da variância, basta calcular a variância, conforme notação algébrica da equação 3, e posteriormente tirar a raiz:

\[\sigma_i^2 = \frac{\sum_{i=1}^{n} (r_i - \bar{r})^2}{N} \]

(3)

Sendo:

\(\sigma_i^2 \) = Variância do fundo de investimento \(i \);
\[r_i = \text{Taxa de retorno efetiva do fundo de investimento } i; \]
\[\bar{r} = \text{Taxa de retorno médio do fundo de investimento } i; \]
\[N = \text{Número de observações no período.} \]

É necessário apresentar outra medida de dispersão, o coeficiente de variação, essa medida faz uso de outras duas medidas para interpretação de resultados, sendo elas o desvio-padrão e a média. O uso dessa variável se dá devido à impossibilidade de se fazer comparações diretas, entre desvio-padrão, uma vez que, essa é uma medida de dispersão baseada na média, e geralmente, podem-se ter variáveis, com diferentes médias. O coeficiente de variação é calculado, dividindo-se o desvio-padrão pela média, conforme equação 4:

\[C_v = \frac{\sigma}{\mu} \quad (4) \]

Sendo:
\[C_v = \text{Coeficiente de variação; } \]
\[\sigma = \text{Desvio-padrão; } \]
\[\mu = \text{Média.} \]

A variância de uma carteira de investimentos, também depende das variâncias dos retornos dos investimentos individuais, porém, com o acréscimo da covariância e/ou correlação dos retornos dos fundos de investimento pesquisados. Algèbricamente, se descreve a variância de uma carteira de investimento, conforme equações 5 e/ou 5.1:

\[\text{Var(carreira)} = X_A^2 \sigma_A^2 + 2X_A X_B \sigma_{A,B} + X_B^2 \sigma_B^2 \quad (5) \]

\[\text{Var(carreira)} = X_A^2 \sigma_A^2 + 2X_A X_B \rho_{A,B} \sigma_A \sigma_B + X_B^2 \sigma_B^2 \quad (5.1) \]

Sendo:
\[\sigma_{A,B} = \rho_{A,B} \sigma_A \sigma_B \]
\[X_A = \text{Valor investido no fundo } A; \]
\(X_B\) = Valor investido no fundo \(B\);
\(\sigma_{A,B}\) = Covariância do fundo de investimento \(A\) com o \(B\);
\(\rho_{A,B}\) = Correlação do fundo de investimento \(A\) com o \(B\).

Ross (2002) diz que uma forma alternativa de escolha de uma carteira, para fins de aplicação, deve conter um retorno esperado alto, e um desvio-padrão baixo. Define ainda, que o retorno esperado de uma carteira, é simplesmente, uma média ponderada dos retornos esperados dos títulos que a compõem. Portanto, o retorno esperado de uma carteira de investimentos, pode ser definido algebricamente conforme equação 6:

\[
\overline{R}_C = X_A \overline{R}_A + X_B \overline{R}_B \tag{6}
\]

Sendo:
\(\overline{R}_C\) = Taxa de retorno esperado da carteira de investimento;
\(\overline{R}_A\) = Taxa de retorno médio do fundo de investimento \(A\);
\(\overline{R}_B\) = Taxa de retorno médio do fundo de investimento \(B\).

Na sequência do trabalho, serão analisadas as medidas de correlação. Esses resultados são usados como balizadores, no grau de associação, entre os respectivos fundos de investimento. Seus cálculos são realizados mediante equações 7 e 8:

\[
Cov(R_A, R_B) = \sigma_{A,B} = \frac{\sum_{t=1}^{N} Rm_{A_t} Rm_{B_t}}{N} - \overline{R}_A \overline{R}_B \tag{7}
\]

\[
Corr(R_A, R_B) = \rho_{A,B} = \frac{Cov(R_A, R_B)}{\sigma_A \sigma_B} \tag{8}
\]

Sendo:
\(Rm_{A_t}\) = Taxa mensal de retorno efetivo do fundo \(A\), no período de tempo \(t\);
\(Rm_{B_t}\) = Taxa mensal de retorno efetivo do fundo \(B\), no período de tempo \(t\);
\(N\) = Número de possíveis resultados de cada fundo de investimento.
De acordo com o princípio da correlação, variáveis que possuem uma relação positiva entre si, ou seja, aumenta uma, a outra aumenta, ou diminui uma, a outra diminui, têm correlação maior que zero. Já as variáveis que possuem uma relação negativa entre si, ou seja, aumenta uma, diminui a outra, e vice-versa, têm correlação menor do que zero. Se as variáveis, não tiverem relação entre si, a correlação será igual a zero.

Porém, o simples cálculo da correlação mostra apenas como duas variáveis caminham juntas, ele desconsidera a relação de causalidade entre as variáveis. Desta forma, é necessário utilizar um processo mais consistente para interpretação dos dados, a ideia de regressão linear entre variáveis é estabelecer justamente uma relação de causalidade entre elas, ou seja, essa ferramenta possui um poder explicativo entre as variáveis. Outra solução é desenvolver o cálculo de correlação parcial com respectivo p-valor.

Desta forma, com o intuito de se estimar algumas variáveis e estabelecer um critério consistente na explicação de relação de causalidade das variáveis, assume-se que o processo gerador das observações da amostra desta pesquisa será representado pela equação 9:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$ \hspace{1cm} (9)

Sendo:

- $Y_i = \text{Variável explicada, dependentes (RF ou RV)}$;
- $X_i = \text{Variável explicativa (independente), benchmark em estudo}$;
- $\alpha = \text{Constante, representa o intercepto da reta com o eixo vertical de Y}$;
- $\beta = \text{Constante, representa a inclinação da reta}$;
- $\varepsilon_i = \text{Variável aleatória, onde estão os resíduos, e possíveis erros de medição}$.

A equação 9, é representada por duas partes, a parte determinista que é $\alpha + \beta X_i$, onde estão associados todos os riscos de mercado, os quais todas as empresas estão correndo e, a parte estocástica, representada pelo termo de erro (ε_i). Observe o GRAF. 4:
Com base nas informações constantes no GRAF. 4 pode-se observar a reta de regressão linear e todas as observações ao redor da reta, sendo α (alfa), o parâmetro do intercepto e, o β (beta), o parâmetro de inclinação da reta, o termo de erro (ε_i) tem média igual a zero.

3.2. A Relação Retorno e Risco

Os fundos previdenciários representam importante papel junto ao mercado de capitais, visto o grande volume financeiro captado. São considerados investidores institucionais e formadores de poupança de longo prazo. Desta forma, é muito importante que os recursos financeiros captados gerem retornos positivos de forma a garantir os benefícios futuros.

Como os recursos captados são reinvestidos em renda variável, certamente existe o risco, é muito importante que o administrador da carteira de investimento, tenha uma estratégia bem definida no processo, que seja eficiente a ponto de cumprir com todos os compromissos futuros.

Mediante processo de diversificação de carteira, esse risco pode ser reduzido, processo conhecido como risco não sistêmico. Essa estratégia tem como princípio evitar a concentração de recursos em determinadas ações, deixando também de selecionar ações que possuam perfil semelhante.
3.3. Gestão de riscos de mercado na administração de recursos de terceiros

A gestão de riscos de mercado na administração de recursos de terceiros é medida que funciona como facilitadora na análise de performance de fundos de investimento. Essa parte do capítulo se limitará a esclarecer algumas definições referentes a alguns dos termos usados no mercado de capitais, sendo eles:

- Risco de mercado absoluto;
- Risco de mercado relativo;
- Medidas de risco de mercado.

3.3.1. Risco de mercado absoluto e risco de mercado relativo

Duarte (2005) contextualiza a gestão de riscos de mercado sob a composição de dois termos definidos conforme segue:

- Risco de mercado absoluto: está relacionado ao gerenciamento de riscos de mercado de forma absoluta e sem referência a um benchmark;
- Risco de mercado relativo: está relacionado ao gerenciamento de riscos de mercado em relação a um benchmark.

3.3.2. A importância das medidas de risco de mercado

O autor também descreve o processo de medição dos riscos da carteira de um fundo de investimento de duas maneiras, sendo:

- Na primeira, apresenta a importância da montagem e operação de fundos de fundos;
- Na segunda, descreve a elaboração de ratings de fundos de investimento.

Especificamente, no primeiro caso, na etapa de montagem de fundos de fundos, as medidas de riscos de mercado podem ser usadas como filtros, de modo a separar os fundos candidatos para consideração em função do desempenho passado.
Já no segundo caso, na operação de *ratings*, as medidas de riscos de mercado podem ser usadas para o contínuo acompanhamento do desempenho dos fundos selecionados na etapa anterior.

3.4. Modelo de Fator - CAPM

O *Capital Asset Princing Model* - (CAPM), representa uma das metodologias empregadas por administradores na medição de riscos de mercado.

3.4.1. Primícias do Modelo CAPM

O CAPM é um modelo estatístico usado por administradores de fundos de investimento na medição de riscos, ele propõe que o retorno esperado da carteira seja igual à taxa de um ativo livre de risco mais uma remuneração atrelada ao risco assumido pelo investidor.

O perfeito funcionamento desse modelo pressupõe algumas hipóteses, que devem ser consideradas, são elas:

- Expectativas homogêneas, quanto ao risco e retorno por parte dos investidores;
- Ausência de custos nos investimentos financeiros;
- Ausência de custos sobre os ganhos;
- Os investidores escolhem carteiras que apresentem menor risco para o mesmo retorno;
- Os investidores podem fazer transações financeiras de empréstimo ou capitalização, sem limitação de valores, a uma mesma taxa livre de risco;
- Os investidores avaliam as carteiras de investimento da mesma forma;
- Nos preços dos títulos, estão embutidas todas as informações disponíveis ao mercado;
- As informações são tratadas de modo universal, ou seja, estão disponíveis a todos os investidores do mercado.

Todas essas hipóteses refletem a lógica do modelo CAPM e do mercado eficiente, levando em consideração que todos os investidores sempre irão aplicar seus recursos financeiros em
ativos com risco e livre de risco. Ressaltando, o modelo CAPM qualifica o mercado como provedor eficiente dos preços de ativos financeiros e, é o que se chama de mercado eficiente.

Ao considerar uma carteira de investimentos define-se que o objetivo principal do modelo CAPM, mediante hipóteses de equilíbrio conforme descrito acima, é eliminar o risco dos ativos individuais, atribuindo assim a toda carteira, apenas o risco sistemático, mediante estratégia de diversificação.

Mesmo mediante estratégia de diversificação, não se é capaz de eliminar o risco sistemático dos ativos estando todas as empresas sujeitas a esse tipo de risco. A medição do mesmo pode ser calculada pelo coeficiente beta também conhecido como risco sistemático beta.

3.4.2. O Coeficiente Beta

Ross (2002) sintetiza a descrição do coeficiente beta (β) negritado na equação 11, como sendo ele o responsável por medir a sensibilidade de um título aos movimentos de mercado.

Sobre o coeficiente beta, Duarte (2005) acrescenta que no modelo CAPM o risco é definido pela variabilidade do retorno ao índice de mercado escolhido, ou seja, o risco de uma ação individual é medido por sua contribuição a essa variabilidade. Em síntese, ambos os autores dão a mesma interpretação ao termo.

A fórmula algébrica descrita por Ross (2002), que caracteriza a formação do beta, se define da seguinte forma:

$$\beta_i = \frac{Cov(R_i, R_M)}{\sigma^2(R_M)}$$ \hspace{1cm} (10)

Sendo:

$\beta_i = \text{Sensibilidade do título } i \text{ a movimentos da carteira de mercado;}
\Cov(R_i, R_M) = \text{Covariância entre os retornos do título } i \text{ e da carteira de mercado;}$
\[R_M = \text{Taxa de retorno efetivo da carteira de mercado.} \]

Em se tratando do beta médio de todos os títulos, é correto dizer, que o mesmo, quando ponderado pela proporção do valor de mercado de cada título em relação ao da carteira de mercado, é igual a 1. Veja pela equação abaixo:

\[\sum_{i=1}^{N} X_i \beta_i = 1 \quad (10.1) \]

Pode-se dizer que no mundo financeiro do CAPM, o beta é usado para analisar o desempenho de determinadas carteiras de mercado, ou seja, realizar o controle de risco de uma ou várias carteiras de fundos de investimento, por meio de previsões condicionais, a fim alcançar uma performance consideravelmente positiva.

Como o beta é interpretado como uma medida de sensibilidade, pode-se dizer que quanto maior o coeficiente beta, maior será o risco sistemático da carteira, consequentemente, também o de perdas da carteira de investimentos. De forma mais detalhada, se o beta for igual a um, significa que se a carteira de mercado subir ou cair 5%, a carteira de investimento em estudo, também tende a subir ou cair os mesmos 5%, trata-se de uma correlação perfeita entre as variáveis.

3.4.3. **Capital Asset Pricing Model (CAPM)**

O CAPM é o ponto de partida para se entender a dinâmica do processo de avaliação de gestão de riscos de mercado, usado principalmente por gestores de fundos de investimento de renda variável. Esse modelo representa em síntese, um método de precificação de ativos, que pode ser exposto mediante a seguinte equação:
Retorno esperado de um título (\bar{R}) pode ser representado pela variável aleatória \bar{R}, onde β, denota o risco sistemático desse título, sob determinado benchmark, cujo retorno esperado da carteira de mercado é representado pela variável aleatória \bar{R}_M, sendo o retorno do título livre de risco ou de risco nulo, dado por $r^{(livre)}$.

O autor também diz que de acordo com o modelo CAPM, o retorno de um título pode ser separado em duas opções, sendo:

- Componentes sistemáticos - relacionados ao mercado acionário;
- Componente residual - relacionado a uma determinada ação sob análise, com valor esperado igual a zero.

Nesse sentido, pode-se decompor o risco isolado do título em estudo, resultando na seguinte equação:

$$\sigma_A^2 = \beta_A^2 \sigma_M^2 + \sigma_e^2$$ \hspace{1cm} (12)

Para Duarte (2005) a equação 12 é bastante poderosa e permite uma interpretação interessante na decomposição de riscos. Acrescenta ainda, que o risco de uma ação, quando medido por sua variância (σ_A^2), pode ser dividido em duas partes, sendo:

\[\text{Retorno esperado} = \text{Taxa livre de risco} + \text{Beta} \times \left(\text{Retorno esperado da carteira de mercado} - \text{Taxa livre de risco} \right) + \text{Erro não sistêmico} \]

\[R = r^{(livre)} + \text{prêmio por risco}\]
Risco de mercado \((\beta^2 \sigma_m^2) \), e;

Retorno residual \((\sigma_r^2) \).

Um possível uso do CAPM está relacionado a gestores de carteiras que preferem não depender de estratégias de mercado, e concentram-se na seleção de ativos. Nesse caso, sua tarefa principal é saber escolher títulos, que irão compor a carteira com mínimo risco de mercado. O CAPM é importante também por prover informação consensual a respeito do retorno esperado para um gestor de carteira.

No mundo do CAPM, os investidores controlam carteiras muito diversificadas. A forma simples do modelo, leva em consideração que todos os investidores aplicam baseando-se simplesmente em um índice de mercado. Esse método é bastante criticado por Haugen (2000), onde se é questionado a eficiência do mercado na precificação dos ativos financeiros.

Conforme exposto acima, existem controvérsias sobre a eficiência no uso do CAPM, Haugen (2000) diz que para que esse modelo tenha pleno êxito, o mercado deve ser eficiente, ou seja, esse mercado deverá sempre estabelecer preços corretos para todas as ações e, desta forma, o preço de cada ação sempre refletirá com exatidão a melhor estimativa de retorno para qualquer conjunto de ações, por toda trajetória da empresa.

Haugen (2000) ressalta que os mercados não são eficientes, e que está muito claro que cometem grandes erros na determinação do preço dos títulos. Diz ainda, que levar em consideração a total eficiência do mercado é se tornar otimista demais quanto aos retornos futuros, é o mesmo que pressupor que as empresas bem sucedidas manterão o mesmo sucesso por toda sua existência.

Grinold (1993), em seu artigo, reforça a discussão sobre o ataque ao CAPM, porém, de maneira cautelosa. Diz que os fatos nos induzem à tentadora conclusão de que o mercado pode ser ineficiente e que, o CAPM permanece em uma condição crítica. O autor sugere um questionamento importante sobre o assunto:

Pode o beta permanecer se o CAPM morrer?
Ele afirma que sim, e diz que existem vários betas separados do CAPM, sendo o beta o determinante crucial do risco e, consequentemente, do retorno esperado de cada investimento, possuindo papel significante.

3.5. Avaliação de Performance de Fundos de Investimentos

Para Duarte (2005), a avaliação de performance de fundos de investimentos é uma etapa importante na gestão de riscos de mercado, pois ela busca entender como se deu no passado o retorno obtido pelos gestores aos clientes, após verificar os riscos considerados para o período em análise. Desta forma, quanto maior o retorno obtido para um mesmo nível de risco de mercado, melhor o desempenho do fundo de investimento sob consideração.

3.5.1. Seleção de Ativos e Market Timing

Devemos nos preocupar com dois problemas básicos durante a execução na avaliação de performance de fundos de investimentos, sendo eles: (1) a seleção de ativos; e (2) o market timing.

A seleção de ativos apresenta um problema de avaliação de desempenho, onde o foco são peculiaridades da seleção de ativos do fundo em análise. Já no segundo item, o market timing, o problema de avaliação de desempenho se resume na habilidade do gestor em conseguir performance superior ao índice de mercado.

Pode-se dizer que as duas abordagens mais utilizadas para avaliação de performance de fundos de investimentos são:

- A comparação da performance passada de fundos com a de seus benchmark, ou, a de fundos de investimento similares, entendidos como aqueles que se encontram dentro de uma mesma classe;
- A determinação da responsabilidade sobre a performance passada, se ela ocorreu devido às habilidades do gestor ou, se foi simplesmente sorte.
3.5.2. Medidas Clássicas de Performance de Carteiras

Duarte (2005) cita que a avaliação de desempenho de fundos de investimentos deve sempre considerar retorno e risco passados simultaneamente. É recomendado analisar a questão, levando em conta os retornos ajustados aos riscos do passado e não se limitar apenas à análise de figuras.

Existem algumas medidas de desempenho interessantes para avaliação de fundos de investimentos, que consideram retornos ajustados a riscos. Elas podem ser chamadas também de razões de eficiência e, neste trabalho, destacam-se duas delas, sendo:

- A razão de Sharpe;
- A razão de Treynor.

A sequência ao trabalho é conduzida mediante as seguintes notações:

- r_1, r_2, \ldots, r_n = Taxa efetiva de retornos passados obtidos por um fundo de investimento durante n períodos de investimento de mesma duração;
- $r_1^{(livre)}, r_2^{(livre)}, \ldots, r_n^{(livre)}$ = Taxa efetiva de retornos passados de um ativo livre de risco durante n períodos de investimento de mesma duração;
- \bar{r} = Taxa média de retorno obtida por um fundo de investimento, durante n períodos;
- $\bar{r}^{(livre)}$ = Taxa média de retorno obtida por um benchmark específico livre de risco, durante n períodos;
- n = Número de observações no período observado.

3.5.2.1. A razão de Sharpe

Duarte (2005) apresenta que a razão de Sharpe é dada pela equação abaixo:

$$\frac{\text{prêmio de risco}}{\text{risco total}}$$

(13)
Conforme o autor, são duas as formas de se maximizar a equação 13 e são elas:

- Para um dado nível de risco total, o prêmio de risco é máximo, ou
- Para um dado prêmio de risco, o risco total é mínimo.

Duarte (2005) cita também que para a maximização é necessário que o estimador de máxima verossimilhança para a razão de Sharpe, na hipótese de que r_i e $r_{i}^{(livre)}$ sigam cada um uma distribuição normal, dado por:

$$\frac{- \frac{\sum_{i=1}^{n}(r_i - \bar{r})^2}{n}}{\sqrt{\sum_{i=1}^{n}(r_i - \bar{r})^2}}$$

Sendo:

$$\bar{r} = \frac{\sum_{i=1}^{n}r_i}{n}$$

$$\bar{r}^{(livre)} = \frac{\sum_{i=1}^{n}r_{i}^{(livre)}}{n}$$

Detalhando melhor a equação 13, pode-se dizer que a parte superior da mesma representa a diferença entre o retorno esperado da carteira de mercado e do ativo livre de risco. Já o risco total é medido pelo desvio padrão do retorno do fundo, ou seja, $\sqrt{\text{Var}(R)}$, no GRAF. 5 verifica-se a dinâmica do índice de Sharpe:
Segundo Duarte (2005), a razão de Sharpe recentemente tornou-se bastante popular no mercado financeiro brasileiro, principalmente na última década. Atualmente, a razão de Sharpe é usada especialmente na ordenação do desempenho de fundos de investimento.

Portanto, se \(S_A > S_B \) denotam a razão de Sharpe de dois fundos de investimentos A e B, a regra de ordenação segue a seguinte lógica:

- Quanto maior a razão de Sharpe, do fundo de investimento, melhor deve ser considerando seu desempenho, referente ao período coberto, ou seja, se \(S_A > S_B \) a regra de ordenação deve ser \(A > B \).

Isto significa que o desempenho passado do fundo de investimento A foi melhor que o do fundo de investimento B. Uma limitação destacada por Duarte (2005) no uso prático da razão de Sharpe está relacionada à possibilidade de obter estimativas negativas. Quando isto ocorrer é necessário observar de forma criteriosa o retorno esperado e o risco total do fundo de investimento para que seja feita a mensuração correta dos dados.
3.5.2.2. A razão de Treynor

A segunda razão de eficiência é a razão de Treynor, que representa o prêmio ganho por unidade de risco assumido, sendo o risco da carteira de investimentos, assumido pelo coeficiente beta. A equação 14 representa de forma sintética, o método analítico para se calcular o índice de Treynor:

\[
\frac{\text{prêmio de risco}}{\text{risco sistemático}} = (14)
\]

Nesse caso, considera-se o risco sistemático, como o beta da carteira, em relação a um índice escolhido como benchmark. Portanto, se denotar a estimativa obtida para o beta representado por \(\hat{\beta} \), a estimativa de máxima verossimilhança da razão de Treynor na hipótese de normalidade para \(r_i \) e \(r_i^{(livre)} \) é dada por:

\[
\frac{r - r^{(livre)}}{\hat{\beta}} = (14.1)
\]

Sendo:

\(\hat{\beta} \) = Risco sistemático da carteira estimado mediante análise de regressão linear.

Para Duarte (2005), a utilização da razão de Treynor, requer uma estimação cuidadosa dos betas dos fundos de investimentos e ao acesso à base de dados confiável na estimação desse beta, que geralmente possui grande dificuldade em estimação.

O índice de Treynor, de uma forma geral, representa o prêmio de risco ganho, mediante o risco assumido, onde o risco da carteira é medido pelo beta. O GRAF. 6 mostra que para o
determinado risco assumido, a carteira A, se mostra melhor que a carteira B, ou seja, a performance da A tende a ser melhor que a B. É importante demonstrar gráficamente como se comporta duas carteiras distintas quanto ao uso do índice de Treynor, veja o GRAF. 6:

Por fim, para efeito de comparação entre a razão de Sharpe e a razão de Treynor, usualmente, quando aplicadas ao mesmo conjunto de fundos de investimentos apresentam resultados bastante similares.
4. METODOLOGIA

Não seria possível dar sequência a esta pesquisa sem uma metodologia definida. É importante, que haja foco para que este trabalho não se perca em detalhes desnecessários.

Um banco de dados é um conjunto de números, que desordenados, visualmente podem confundir muito as pessoas; portanto, é necessário realizar um agrupamento de dados, para que se permita tirar conclusões interessantes a respeito do que está acontecendo.

4.1. Abordagem

Este trabalho propõe realizar uma análise fundamentalista dos dados baseada na performance dos planos previdenciários, avaliando a capacidade do gestor financeiro de cada um dos planos, em gerar resultados positivos aos clientes e à própria instituição. Para isto, serão usados métodos estatísticos que auxiliarão na compreensão dos resultados.

4.2. Tipo de Pesquisa

Essa pesquisa pode ser classificada como descritiva com a intenção de avaliar o comportamento da performance dos investimentos previdenciários em relação à movimentação do benchmark de mercado, sendo ele o CDI ou IBOVESPA.

4.3. Unidade de Análise

As unidades de análises escolhidas para desenvolvimento desta pesquisa foram as Entidades Abertas de Previdência Complementar – EAPCs.

4.4. Instrumento de Coleta de Dados

Como instrumento de coleta de dados foi utilizado material específico de entidades financeiras brasileiras, material constituído de um banco de dados, onde consta o valor de mercado de cada fundo de investimento medido por cotas.
Face à grande dificuldade em se conseguir dados relevantes sobre o tema, esse estudo se limita em analisar e trabalhar apenas o valor das cotas dos fundos de investimentos, utilizando os benchmarks de mercado em renda fixa e renda variável como balizadores.

4.5. Amostra

A base amostral desta pesquisa se constitui mediante banco de dados específico de entidades financeiras brasileiras e constituída por 5 fundos de previdência complementar aberta; portanto, todos ligados às entidades financeiras privadas.

Analisou-se o período mensal compreendido entre janeiro de 2007 a julho de 2010 e, nesse contexto se dividiram os fundos previdenciários conforme TAB. 2:

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Tipo de Investimento Previdenciário</th>
<th>Fundo Previdenciário Privado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º Grupo</td>
<td>Renda Fixa</td>
<td>RF1; RF2; RF3; RF4</td>
</tr>
<tr>
<td>2º Grupo</td>
<td>Composto (até 20% Renda Variável)</td>
<td>RV</td>
</tr>
</tbody>
</table>

FONTE: Elaborado pelo autor desta pesquisa.

Mediante determinações legais, torna-se necessária a preservação da identidade dos fundos selecionados. Por esse motivo, os fundos previdenciários escolhidos serão identificados mediante nomenclatura própria, sendo RF (renda fixa), e RV (renda variável).

4.6. Tratamento dos Dados

Para tratamento dos dados utilizou-se de softwares como Minitab e Microsoft Excel. As variáveis utilizadas neste estudo empírico foram:

- Retornos mensais das carteiras dos fundos de investimento previdenciários;
- Retornos mensais da carteira de mercado;
- Retornos mensais do ativo livre de risco.
Como benchmarks referenciais de performance, foram utilizados os seguintes índices: Certificado de Depósito Interbancário – CDI, referente ao ativo livre de risco, e o índice Bovespa – IBOVESPA, referente ao ativo com risco, representando a carteira de mercado.

4.7. Procedimentos Empíricos

Este trabalho monográfico promove uma análise qualitativa da performance dos planos previdenciários, fazendo uso do modelo CAPM, e dos respectivos índices financeiros, Sharpe e Treynor, que servirão como balizadores dessa performance.

Os procedimentos empíricos deste trabalho, citados no parágrafo acima, buscam de forma descritiva, estudar todo banco de dados, de forma individualizada, tendo como variáveis resposta: RF1; RF2; RF3; RF4 e RV.
5. ANÁLISE DE RESULTADOS

O processo de análise de resultados é apresentado por etapas, apresentando análise descritiva e avaliação de algumas medidas de dispersão.

Para análise da performance da carteira de cada plano previdenciário, será necessário estruturar os dados de acordo com os modelos propostos, sendo eles o Sharpe e o Treynor. Portanto, será necessário identificar na variável excesso de retorno, que será calculado, mediante equação 15:

$$\bar{R}_C - \bar{r}^{(livre)}$$

Sendo:

\(\bar{R}_C\) = Taxa de retorno esperado da carteira do fundo previdenciário;

Considerando serem dois benchmarks para realização deste trabalho, sendo o ativo livre de risco - CDI e o ativo com risco de mercado - IBOVESPA, é preciso calcular os retornos esperados dos mesmos. Nesta sequência, cabe informar que, com base nas 43 observações de cada variável desta pesquisa, as taxas de retorno média mensal encontrada no período, para o CDI e o IBOVESPA, foram de 0,8712% e 1,27%, respectivamente.

5.1. Análise Descritiva dos Dados

Inicialmente, serão trabalhados os fundos de investimento de renda fixa, sendo eles: RF1, RF2; RF3 e RF4. Nesse caso, o benchmark usado para comparação de performance será o CDI.

Nesta fase, será realizada a análise descritiva dos dados, onde serão apresentados os resultados referentes às seguintes observações estatísticas: Média Aritmética Simples, Valor Mínimo, 1º Quartil, Mediana, 3º Quartil, e Valor Máximo.
Antes de se iniciar a apresentação dos resultados estatísticos é importante verificar como está a distribuição dos dados em cada amostra. No caso dos fundos de renda fixa essa visão é observada conforme GRAF. 7:

GRÁFICO 7: Gráfico Scatterplot de Renda Fixa vs CDI - Jan/07 à Jul/10.
Fonte: Desenvolvido pelo autor desta pesquisa através do *Software Minitab*.

A TAB. 3 será usada como artifício para organização dos dados descritivos, sendo que no parágrafo abaixo da tabela, contém a interpretação dos resultados:

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>N</th>
<th>Média Aritmética Simples (% am)</th>
<th>Valor Mínimo</th>
<th>Q1</th>
<th>Mediana</th>
<th>Q3</th>
<th>Valor Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>43</td>
<td>0,6405</td>
<td>0,40</td>
<td>0,53</td>
<td>0,64</td>
<td>0,73</td>
<td>0,91</td>
</tr>
<tr>
<td>RF2</td>
<td>43</td>
<td>0,7558</td>
<td>0,50</td>
<td>0,64</td>
<td>0,75</td>
<td>0,87</td>
<td>1,04</td>
</tr>
<tr>
<td>RF3</td>
<td>43</td>
<td>0,8007</td>
<td>0,54</td>
<td>0,69</td>
<td>0,79</td>
<td>0,91</td>
<td>1,11</td>
</tr>
<tr>
<td>RF4</td>
<td>43</td>
<td>0,7086</td>
<td>0,46</td>
<td>0,59</td>
<td>0,70</td>
<td>0,81</td>
<td>1,00</td>
</tr>
<tr>
<td>CDI</td>
<td>43</td>
<td>0,8712</td>
<td>0,59</td>
<td>0,76</td>
<td>0,86</td>
<td>0,99</td>
<td>1,17</td>
</tr>
</tbody>
</table>

TABELA 3: Análise descritiva dos retornos mensais de RF1, RF2, RF3, RF4 e CDI – Jan/07 à Jul/10.
Fonte: Autoria própria - *Minitab*.

Com base no GRAF. 7 e a TAB. 3 têm-se as primeiras informações sobre o espaço amostral dessa pesquisa. Pode-se observar a média aritmética simples, considerando os 43 meses de cada variável e constatar que todos os quatro fundos de renda fixa (RF1, RF2, RF3 e RF4),
apresentaram retorno médio mensal abaixo do *benchmark* considerado, no caso o CDI, com retorno médio mensal de 0,8712% no período.

Ainda na TAB. 3, observa-se que a média aritmética simples e a mediana de todas as cinco variáveis apresentam resultados muito próximos, o que nos comprova uma quase perfeita distribuição das observações das variáveis amostrais. De uma maneira geral, e apenas com uma visão superficial sobre a base amostral, observa-se que os indicadores CDI se destacaram como melhores índices analíticos em todos os critérios no período, sendo, média aritmética simples, retorno mínimo, Q1 e Q3, mediana e retorno máximo. No caso do valor mínimo, o menor retorno mensal observado em CDI no período foi de 0,59%, e o maior de 1,17%. No tocante a divisão das observações da variável CDI em quartis, constata-se que 25% das observações estão abaixo do retorno mensal 0,76%, 50% abaixo de 0,86%, e 75% abaixo de 0,99%.

O GRAF. 8 apresenta a distribuição dos dados do único fundo de renda variável deste trabalho:

![Scatterplot of RV vs IBOVESPA](image)

GRÁFICO 8: Gráfico Scatterplot de Renda Variável vs IBOVESPA - Jan/07 à Jul/10.
Fonte: Desenvolvido pelo autor desta pesquisa através do *Software Minitab*.

Neste caso, a TAB. 4 apresenta dado referente ao fundo previdenciário de renda variável, sendo o RV. O *benchmark* usado para comparação de *performance* será o IBOVESPA:
Com base na TAB. 4 observa-se que o fundo de investimento de renda variável também apresentou retorno médio mensal abaixo do benchmark considerado, tendo o IBOVESPA retorno médio de 1,27% ao mês, contra 0,907% de RV. Com o auxílio do GRAF. 8 observa-se também grande dispersão entre os dados da amostra, diferentemente do que foi constatado em renda fixa através do GRAF. 7; ou seja, as observações estão mais dispersas em relação à média amostral. Como no caso de renda fixa, não pode tomar decisões precipitadas sobre a performance do fundo, é necessário se avaliar outras questões, até que se tome qualquer decisão sobre a performance final do fundo.

Ainda com relação a TAB. 4, no que se refere às medidas de Q1, Mediana e Q3, retorno mínimo e máximo das variáveis RV e IBOVESPA, considerando todas as 43 observações, verifica-se uma concentração considerável de retornos negativos no primeiro quartil de IBOVESPA, ou seja, quando ordenamos os retornos do menor para o maior, observamos que 25% dos 43 retornos estão abaixo de -3,53, enquanto em RV verifica-se melhor resultado, sendo que 25% dos retornos estão abaixo de 0,43. Percebe-se também que o benchmark de mercado apresentou o menor e o maior retorno mensal do período analisado, sendo -25,00 e 15,50, enquanto RV apresentou -0,71 e 2,28, respectivamente. Essa observação nos dá uma visão superficial da grande dispersão dos retornos em IBOVESPA.

Para verificação da normalidade dos dados amostrais, foi utilizado software estatístico Minitab, através da avaliação do p-value do teste de Anderson-Darling. Sendo observado como critério de normalidade p-value superior a 0,05. Os resultados deste teste estão inseridos conforme TAB. 5:

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>N</th>
<th>P-Value</th>
<th>Anderson Darling</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>43</td>
<td>0,561</td>
<td>0,302</td>
</tr>
<tr>
<td>RF2</td>
<td>43</td>
<td>0,638</td>
<td>0,277</td>
</tr>
</tbody>
</table>

Fonte: Autoria própria - Minitab.
Com base nas estimativas da TAB. 5 pode-se afirmar que, todos os fundos apresentaram retornos que podem ser aproximados por uma distribuição normal.

5.2. Medidas de Dispersão dos Dados

A análise das medidas de dispersão também seguirá a mesma lógica acima, primeiro trataremos os fundos de renda fixa, depois renda variável.

A TAB. 6 apresenta os fundos de investimento de renda fixa, RF1, RF2, RF3, RF4 e CDI, no período de janeiro de 2007 a julho de 2010, equivalente a 43 observações mensais. Nessa tabela estão o retorno médio (% a.m.), desvio-padrão e coeficiente de variação dos respectivos fundos previdenciários:

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Retorno Médio (% am)</th>
<th>Desvio-Padrão</th>
<th>Coef. de Variação</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>0,6405</td>
<td>0,1345</td>
<td>0,2100</td>
</tr>
<tr>
<td>RF2</td>
<td>0,7558</td>
<td>0,1375</td>
<td>0,1819</td>
</tr>
<tr>
<td>RF3</td>
<td>0,8007</td>
<td>0,1372</td>
<td>0,1714</td>
</tr>
<tr>
<td>RF4</td>
<td>0,7086</td>
<td>0,1369</td>
<td>0,1932</td>
</tr>
<tr>
<td>CDI</td>
<td>0,8712</td>
<td>0,1435</td>
<td>0,1647</td>
</tr>
</tbody>
</table>

É possível observar através da TAB. 6 que todas as variáveis de renda fixa apresentam baixo desvio padrão, com entendimento de que as observações estão pouco dispersas. Identifica-se leve destaque na variável CDI, representando ser o investimento com maior desvio-padrão no período, seguido por RF2, RF3, RF4 e RF1.
A simples observação do desvio padrão, não pode ser entendida como balizador na dispersão dos dados, é necessário medir o coeficiente de variação das variáveis, que nada mais é que o desvio padrão dividido pelo retorno médio mensal da variável. Esse cálculo mede a dispersão dos dados em relação à média amostral. Podemos observar que a variável CDI, mesmo apresentando o maior desvio padrão, não apresentou maior coeficiente de variação e, se apresentou como a variável com menor coeficiente de variação entre os fundos de renda fixa, com coeficiente de 0,1647, apresentando média dispersão.

O próximo passo é observar se existe correlação entre as variáveis, e caso exista, calcular o nível de correlação entre elas, esses dados, irão nos ajudar a verificar se as variáveis caminham juntas. Através do software estatístico Minitab, é possível calcular todas as correlações e o respectivo p-valor das variáveis consideradas de renda fixa, sendo: RF1, RF2, RF3, RF4 e CDI:

![Correlações: RF1; RF2; RF3; RF4; CDI](image)

De acordo com a FIGURA 1, todas as variáveis apresentadas no estudo, sendo RF1, RF2, RF3, RF4 e CDI estão correlacionadas. Outro ponto a ser considerado, e que merece atenção na pesquisa, é a estatística do teste z de significância de proporções. Na FIGURA 1, o p-valor é representado pelo coeficiente logo abaixo da correlação, nesses casos específicos todos apresentaram p-valor significativo, ao nível de significância de 0,05. Ainda que os dados apresentados pela FIGURA 1 sobre a correlação simples entre as variáveis sejam visualmente
favoráveis, esse fato deve ser constado mediante correlação parcial, e verificação do teste *p*-valor.

As TAB. 7, 8, 9 e 10 abaixo apresentam as medidas de correlação parcial e o *p*-valor das variáveis RF1, RF2, RF3, RF4 e CDI:

<table>
<thead>
<tr>
<th>Variável (RF1)</th>
<th>Corr. Parcial</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1 x RF2</td>
<td>0,1182</td>
<td>0,4675</td>
</tr>
<tr>
<td>RF1 x RF3</td>
<td>-0,4050</td>
<td>0,0095</td>
</tr>
<tr>
<td>RF1 x RF4</td>
<td>0,5339</td>
<td>0,0004</td>
</tr>
<tr>
<td>RF1 x CDI</td>
<td>0,1942</td>
<td>0,2298</td>
</tr>
</tbody>
</table>

TABELA 7: Correlação Parcial e *P*-Value - RF1 x RF2, RF3, RF4 e CDI.
Fonte: Cálculo via Software estatístico Stata.

A TAB. 7 apresenta os valores da correlação parcial e o *p*-valor de RF1 versus todas as demais variáveis, sendo RF2, RF3, RF4 e CDI. Observa-se que a correlação simples apresentada na FIGURA 1 tem grandes discrepâncias quando comparado aos resultados da correlação parcial da TAB. 7.

Através da TAB. 7 verifica-se que ao nível de significância de 0,05, RF1 possui correlação negativa com RF3 e correlação positiva com RF4; pois apresentam *p*-valor significativo com ambas as variáveis, ou seja, não superior a 0,05. Quanto a RF2 e CDI não se pode dizer que existe correlação com RF1, pois apresentaram *p*-valor não significativo, ou seja, superior a 0,05.

<table>
<thead>
<tr>
<th>Variável (RF2)</th>
<th>Corr. Parcial</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF2 x RF1</td>
<td>0,1182</td>
<td>0,4675</td>
</tr>
<tr>
<td>RF2 x RF3</td>
<td>-0,0109</td>
<td>0,9467</td>
</tr>
<tr>
<td>RF2 x RF4</td>
<td>0,5928</td>
<td>0,0001</td>
</tr>
<tr>
<td>RF2 x CDI</td>
<td>0,4010</td>
<td>0,0103</td>
</tr>
</tbody>
</table>

TABELA 8: Correlação Parcial e *P*-Value – RF2 x RF1, RF3, RF4 e CDI.
Fonte: Cálculo via Software estatístico Stata.

Com relação a RF2, a TAB. 8 apresenta duas correlações positivas com *p*-valor significativo ao índice de significância de 0,05, sendo RF4 e CDI. A primeira sendo RF4, apresentando correlação parcial de 0,5928, e *p*-valor de 0,0001, e a segunda sendo CDI, com correlação parcial de 0,4010 e *p*-valor de 0,0103.
A TAB. 9 representa RF3, e com três correlações interessantes, sendo RF1 com correlação negativa de 0,4050, RF4 com correlação positiva de 0,5557, e CDI com correlação positiva de 0,5606, ambas com *p-value* significativo ao índice de significância de 0,05.

A TAB. 10 representa RF4, e também apresenta três correlações interessantes no nível de significância de 0,05, sendo elas, RF1 com correlação positiva de 0,5339, RF2 com correlação positiva de 0,5928 e RF3 com correlação positiva de 0,5557.

Após avaliar as tabelas acima, em resumo, pode-se dizer que CDI apresenta correlação positiva apenas com RF2 e RF3, sendo RF3 em maior proporção, ou seja, esses dois fundos de renda fixa se mostraram mais condizentes com a estruturação de ativos financeiros do *benchmark*.

A avaliação das medidas de dispersão para fundo de renda variável também seguirá a mesma sequência apresentada em renda fixa, por isso também foi criada a tabela abaixo, para tabulação dos dados:

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Retorno Médio (% an)</th>
<th>Desvio-Padrão</th>
<th>Coef. de Variação</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV</td>
<td>0,907</td>
<td>0,659</td>
<td>0,7266</td>
</tr>
<tr>
<td>IBOVESPA</td>
<td>1,27</td>
<td>7,660</td>
<td>6,0315</td>
</tr>
</tbody>
</table>

TABELA 11: Medidas de Dispersão de RV e IBOVESPA – Jan/07 à Jul/10.
Fonte: Cálculos desenvolvidos no *Minitab.*
É possível observar através da TAB. 11, que o *benchmark* de mercado, sendo o IBOVESPA, apresenta consideravelmente maior desvio-padrão, e maior coeficiente de variação. Isso nos mostra que, as 43 observações da amostra do IBOVESPA estão certamente muito mais dispersas em relação à média de que é 1,27%, do que em RV; pois o coeficiente de variação de IBOVESPA é muito elevado, sendo 6,0315. Com relação à análise de *performance*, ainda não se pode constatar nada, essas medidas de dispersão servem apenas para que o leitor tenha percepção clara de como estão distribuídos os retornos de cada fundo e/ou *benchmark*.

Em referência ao fundo de renda variável (RV), o cálculo da correlação simples do fundo com as variáveis CDI e IBOVESPA se faz através de *software* estatístico *Minitab*, e se apresenta os resultados através da FIGURA 2:

![Correlações: RV; CDI; IBOVESPA](image)

Na FIGURA 2 observa-se correlação positiva e elevada entre RV versus IBOVESPA, isso nos transmite a idéia de que essas duas variáveis podem estar associadas positivamente, pois o coeficiente *p*-valor apresenta valor significativo ao nível de significância de 0,05.

Ainda em referência a FIGURA 2, no caso de RV versus CDI, se observa *p*-valor não significativo ao nível de significância de 0,05. Como na análise feita em renda fixa, para correta interpretação dos dados, é necessário avaliar a correlação parcial, a TAB. 12 consolida os resultados conforme abaixo:
Através da TAB. 12 observa-se que RV versus CDI estão muito correlacionados, ou seja, existe uma forte relação positiva entre as mesmas, assim como RV versus IBOVESPA também estão muito correlacionadas, pois ambos apresentaram *p-value* significativo ao nível de significância de 0,05.

Em resumo, considerando a TAB. 12 pode-se afirmar que RV possui correlação positiva tanto com CDI quanto com IBOVESPA.

5.3. Retorno Ajustado ao Risco

Os índices encontrados em *Sharpe* e *Treynor* serão utilizados como determinantes na avaliação da *performance* dos fundos de investimento. Nesse contexto, para que a carteira referente ao fundo de investimento previdenciário tenha bom desempenho será necessário que os valores dos respectivos índices sejam positivos.

5.3.1. Resultado do Índice de *Sharpe*

Conforme já mencionado anteriormente, certamente à medida do desvio-padrão, fará muita diferença no cálculo da razão de *Sharpe*, visto que esse índice atribui ao desvio-padrão, significado análogo ao de risco total da carteira, portanto, quanto maior o desvio-padrão maior o risco.

Sabe-se que o índice de *Sharpe* é calculado mediante retorno médio da carteira, menos o retorno do ativo livre de risco, dividido pelo desvio-padrão da carteira. A TAB. 13 traz de forma consolidada o resultado desse cálculo:

<table>
<thead>
<tr>
<th>Variável (RV)</th>
<th>Corr. Parcial</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV x CDI</td>
<td>0,5170</td>
<td>0,0005</td>
</tr>
<tr>
<td>RV x IBOVESPA</td>
<td>0,8061</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

TABELA 12: Correlação Parcial e *P-Value* – RV x CDI e IBOVESPA.
Fonte: Cálculo via *Software* estatístico *Stata.*
<table>
<thead>
<tr>
<th>Fundo de Investimento</th>
<th>Retorno Médio (% am)</th>
<th>Excesso de retorno (Rm – CDI)</th>
<th>Desvio-padrão</th>
<th>Índice de Sharpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1 x CDI</td>
<td>0,6405</td>
<td>-0,2307</td>
<td>0,1345</td>
<td>-1,7152</td>
</tr>
<tr>
<td>RF2 x CDI</td>
<td>0,7558</td>
<td>-0,1154</td>
<td>0,1375</td>
<td>-0,8393</td>
</tr>
<tr>
<td>RF3 x CDI</td>
<td>0,8007</td>
<td>-0,0705</td>
<td>0,1372</td>
<td>-0,5138</td>
</tr>
<tr>
<td>RF4 x CDI</td>
<td>0,7086</td>
<td>-0,1626</td>
<td>0,1369</td>
<td>-1,1877</td>
</tr>
<tr>
<td>RV x CDI</td>
<td>0,9070</td>
<td>0,0358</td>
<td>0,6590</td>
<td>0,0543</td>
</tr>
</tbody>
</table>

TABELA 13: Índice de Sharp – jan/07 à jul/10.
Fonte: Elaborado pelo autor deste trabalho.

Em todas as observações da TAB. 13 observam-se valores positivos de retorno médio mensal dos fundos de investimento, porém, não superiores ao retorno médio mensal do CDI de 0,8712, com exceção de RV que apresentou retorno médio de 0,907. Essa constatação é facilmente identificada, quando se observa a coluna excesso de retorno, que apresenta valores negativos para RF1, RF2, RF3 e RF4; ou seja, essas variáveis, apresentaram retorno médio no período, inferior ao do ativo livre de risco, sendo o CDI, que apresentou retorno médio de 0,8712 ao mês.

Com base nos fundos de renda fixa, não é possível avaliar o que melhor se destacou pelo índice de Sharpe, pois todos tiveram índices negativos; ou seja, nenhum desses fundos conseguiu margem de superação sobre o benchmark. Com relação ao fundo de renda variável, esse obteve retorno médio mensal acima do CDI e por isso, teve seu índice de Sharpe positivo.

5.3.2. Resultado do Índice de Treynor

Seguindo o disposto acima, a TAB. 14 apresenta os resultados do índice de Treynor, no período compreendido de jan/07 a jul/10. Esse índice é calculado mediante retorno médio da carteira, menos retorno do ativo livre de risco, dividido pelo coeficiente beta. Para o cálculo do índice de Treynor, considera-se que a carteira de ativos da entidade financeira tenha passado pelo processo de diversificação, ou seja, a carteira estará sujeita a um único tipo de risco, denominado risco sistêmico medido pelo coeficiente beta. Para cálculo do coeficiente beta, uso-se o software estatístico Minitab, e como comprovação de resultados disponibilizou-se os cálculos conforme abaixo.
Regression Analysis: RF1 versus CDI

The regression equation is
RF1 = - 0,171 + 0,931 CDI

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0,17068</td>
<td>0,000</td>
</tr>
<tr>
<td>CDI</td>
<td>0,93111</td>
<td>0,000</td>
</tr>
</tbody>
</table>

R-Sq = 98,7%

Na equação de regressão acima se observa RF1, que é a variável resposta, e CDI que representa a variável regressora ou explicativa, já os coeficientes -0,171 e 0,931, são respectivamente, o intercepto e a inclinação da reta de regressão e recebem o nome de coeficientes de regressão. Portanto, é razoável supor que a variável RF1 está relacionada com CDI pela equação de regressão acima.

Cabe aqui interpretar o coeficiente de regressão ao qual chamamos de beta, que é responsável por mensurar a exposição do investidor ao risco sistemático, ou seja, o risco de mercado, que precisa ser mensurado e não é eliminado pela diversificação. Através da equação acima, observa-se beta igual a 0,931, ou seja, RF1 se movimenta em média, menos que o CDI, de forma que se o CDI cair 10% o RF1 cairá 9,31%, se subir 10%, subirá 9,31%. Sendo assim, pode-se dizer que quanto maior a volatilidade, maior o risco; betas menores, riscos menores, betas maiores, riscos maiores.

Ainda com referência ao modelo de regressão de RF1, observa-se o poder explicativo de R^2 elevado, sendo 98,7%, com p-valor significativo ao nível de significância de 0,05. Esse resultado significa que o modelo explicou 98,7% da variação na variável resposta RF1, ou seja, 98,7% da variabilidade de RF1 é explicada pela variável regressora CDI.

Regression Analysis: RF2 versus CDI

The regression equation is
RF2 = - 0,0765 + 0,955 CDI

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0,076526</td>
<td>0,000</td>
</tr>
<tr>
<td>CDI</td>
<td>0,95544</td>
<td>0,000</td>
</tr>
</tbody>
</table>

R-Sq = 99,5%
A equação de regressão acima representa RF2, que é a variável resposta, e CDI como variável regressora ou explicativa; já os coeficientes -0,0765 e 0,955 representam, respectivamente, o intercepto e a inclinação da reta de regressão. Portanto, é razoável supor que a variável resposta RF2 está relacionada com CDI pela equação de regressão acima.

Quanto à interpretação do coeficiente de regressão, o beta, através da equação acima, observa-se beta igual a 0,955, ou seja, RF2 se movimenta em média, menos que o CDI, de forma que se o CDI cair 10% o RF2 cairá 9,55%, se subir 10%, subirá 9,55%.

Ainda com referência ao modelo de regressão de RF2, observa-se poder explicativo de R^2 elevado, sendo 99,5%, com *p-value* significativo ao nível de significância de 0,05. Esse resultado significa que o modelo explicou 99,5% da variação na variável resposta RF2, ou seja, 99,5% da variabilidade de RF2 é explicada pela variável regressora CDI.

Regression Analysis: RF3 versus CDI

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0,03</td>
<td>0,003</td>
</tr>
<tr>
<td>CDI</td>
<td>0,954</td>
<td>0,000</td>
</tr>
</tbody>
</table>

O modelo acima representa RF3, que é a variável resposta, e CDI como variável regressora ou explicativa; já os coeficientes -0,03 e 0,954, representam, respectivamente, o intercepto e a inclinação da reta de regressão. Portanto, é razoável supor que a variável resposta RF3 está relacionada com CDI pela equação de regressão acima.

Observa-se beta de 0,955, ou seja, RF3 se movimenta em média, menos que o CDI, de forma que se o CDI cair 10% o RF3 cairá 9,55%, se subir 10%, subirá 9,55%.

Ainda com referência ao modelo de regressão de RF3, observa-se poder explicativo de R^2 elevado, sendo 99,5%, com *p-value* significativo ao nível de significância de 0,05. Esse resultado significa que o modelo explicou 99,5% da variação na variável resposta RF3, ou seja, 99,5% da variabilidade de RF3 é explicada pela variável regressora CDI.
Regression Analysis: RF4 versus CDI

The regression equation is
\[RF4 = -0.12 + 0.951 \text{ CDI} \]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.1197</td>
<td>0.000</td>
</tr>
<tr>
<td>CDI</td>
<td>0.95111</td>
<td>0.000</td>
</tr>
</tbody>
</table>

R-Sq = 99.3%

O modelo acima representa RF4, como variável resposta, e CDI como variável regressora ou explicativa; já os coeficientes -0.12 e 0.951, representam, respectivamente, o intercepto e a inclinação da reta de regressão. Portanto, é razoável supor que a variável resposta RF4 está relacionada com CDI pela equação de regressão acima.

Observa-se beta de 0.951, ou seja, RF4 se movimenta em média, menos que o CDI, de forma que se o CDI cair 10% o RF4 cairá 9.51%, se subir 10%, subirá 9.51%.

Ainda com referência ao modelo de regressão de RF4, observa-se poder explicativo de \(R^2 \) elevado, sendo 99.3%, com \(p\)-valor significativo ao nível de significância de 0.05. Esse resultado significa que o modelo explicou 99.3% da variação na variável resposta RF4, ou seja, 99.3% da variabilidade de RF4 é explicada pela variável regressora CDI.

Regression Analysis: RV versus CDI

The regression equation is
\[RV = 0.454 + 0.52 \text{ CDI} \]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.4537</td>
<td>0.475</td>
</tr>
<tr>
<td>CDI</td>
<td>0.5197</td>
<td>0.470</td>
</tr>
</tbody>
</table>

R-Sq = 1.3%

O modelo acima representa RV versus CDI, sendo RV a variável resposta, e CDI a variável regressora ou explicativa. Os coeficientes 0.454 e 0.52, representam respectivamente, o intercepto e a inclinação da reta de regressão. Porém, observa-se poder explicativo de \(R^2 \) reduzido, sendo 1.3%, com \(p\)-valor não significativo ao nível de significância de 0.05. Portanto, não se torna aconselhável supor que a variável resposta RV esteja relacionada com CDI.
Regression Analysis: RV versus IBOVESPA

The regression equation is
RV = 0.827 + 0.0625 IBOVESPA

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.82714</td>
<td>0.000</td>
</tr>
<tr>
<td>IBOVESPA</td>
<td>0.062514</td>
<td>0.000</td>
</tr>
</tbody>
</table>

R-Sq = 52.8%

O modelo acima representa RV, como variável resposta, e IBOVESPA como variável regressora ou explicativa; já os coeficientes 0.827 e 0.0625, representam, respectivamente, o intercepto e a inclinação da reta de regressão. Portanto, é razoável supor que a variável resposta RV está relacionada com IBOVESPA pela equação de regressão acima.

Observa-se beta de 0.0625, ou seja, RV se movimenta em média, menos que o IBOVESPA, de forma que se o IBOVESPA cair 10% o RV cairá 0.625%, se subir 10%, subirá 0.625%.

Ainda com referência ao modelo de regressão de RV versus IBOVESPA, observa-se poder explicativo de R^2 moderado, sendo 52.8%, com p-value significativo ao nível de significância de 0.05. Esse resultado significa que o modelo explicou 52.8% da variação na variável resposta RV, ou seja, 52.8% da variabilidade de RV é explicada pela variável regressora IBOVESPA.

Todas as regressões acima foram essenciais para o cálculo do índice de Treynor por apresentarem o valor do coeficiente beta respectivo de cada fundo previdenciário, esses valores foram extraídos das regressões acima, e transcritos na TAB. 14, conforme abaixo:

<table>
<thead>
<tr>
<th>Fundo de Investimento</th>
<th>Retorno Médio (% am)</th>
<th>Excesso de retorno (Rm – CDI)</th>
<th>Beta</th>
<th>Índice de Treynor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1 x CDI</td>
<td>0.6405</td>
<td>-0.2307</td>
<td>0.9310</td>
<td>-0.2478</td>
</tr>
<tr>
<td>RF2 x CDI</td>
<td>0.7558</td>
<td>-0.1154</td>
<td>0.9550</td>
<td>-0.1208</td>
</tr>
<tr>
<td>RF3 x CDI</td>
<td>0.8007</td>
<td>-0.0705</td>
<td>0.9540</td>
<td>-0.0739</td>
</tr>
<tr>
<td>RF4 x CDI</td>
<td>0.7086</td>
<td>-0.1626</td>
<td>0.9510</td>
<td>-0.1710</td>
</tr>
<tr>
<td>RV x CDI</td>
<td>0.9070</td>
<td>0.0358</td>
<td>0.5200</td>
<td>0.0688</td>
</tr>
</tbody>
</table>

TABELA 14: Índice de Treynor – jan/07 à jul/10.
Fonte: Elaborado pelo autor deste trabalho.
Assim como no caso do índice de *Sharpe*, na TAB. 14 observam-se retornos médios positivos em todas as variáveis, porém, alguns inferiores ao retorno médio do ativo livre de risco, como é o caso de RF1, RF2, RF3 e RF4. Consta-se que, a *performance* alcançada nos fundos, com índice de *Treynor* negativo, é inferior ao rendimento médio alcançado pelo *benchmark*, exceção apenas para RV que apresentou índice de *Treynor* positivo.

5.4. Resultado dos Retornos Esperados

Este item do trabalho tem objetivo de calcular o retorno esperado da carteira, mediante modelo CAPM, um método de precificação de ativos utilizado pelo mercado, apesar de polêmico, esse método é agraciado por sua simplicidade e apelo intuitivo, conforme já descrito, via equação 11. A TAB. 15 apresenta de forma resumida, todos os resultados obtidos:

<table>
<thead>
<tr>
<th>Fundo de Investimento</th>
<th>Retorno Médio (% am)</th>
<th>Excesso de retorno (Rm – CDI)</th>
<th>Beta</th>
<th>Retorno Esperado da Carteira (% am)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1 x CDI</td>
<td>0,6405</td>
<td>-0,2307</td>
<td>0,9310</td>
<td>0,6564</td>
</tr>
<tr>
<td>RF2 x CDI</td>
<td>0,7558</td>
<td>-0,1154</td>
<td>0,9550</td>
<td>0,7610</td>
</tr>
<tr>
<td>RF3 x CDI</td>
<td>0,8007</td>
<td>-0,0705</td>
<td>0,9540</td>
<td>0,8039</td>
</tr>
<tr>
<td>RF4 x CDI</td>
<td>0,7086</td>
<td>-0,1626</td>
<td>0,9510</td>
<td>0,7166</td>
</tr>
<tr>
<td>RV x CDI</td>
<td>0,9070</td>
<td>0,0358</td>
<td>0,5200</td>
<td>0,8898</td>
</tr>
<tr>
<td>RV x IBOVESPA</td>
<td>0,9070</td>
<td>-0,3630</td>
<td>0,0625</td>
<td>0,8961</td>
</tr>
</tbody>
</table>

TABELA 15: Retornos Esperados dos Fundos Previdenciários via Modelo CAPM.
Fonte: Elaborado pelo autor deste trabalho.

Na TAB. 15 observa-se o retorno esperado da carteira medído para todos os fundos de investimento estudados, ou seja, mediante as informações disponíveis é possível assimilar o retorno que se espera de cada fundo. No caso de RF1 versus CDI, considerando retorno médio de 0,6405 ao mês para RF1, com o retorno médio de CDI que foi 0,8712 ao mês, tem-se excesso de retorno negativo de -0,2307, ou seja, CDI apresentou melhor retorno médio que RF1 no período, como o beta é igual a 0,931 espera-se um retorno médio mensal de 0,6564 para a carteira RF1. Essa mesma analogia deve ser refeita para os demais fundos de investimento.
6. CONCLUSÃO

A parte introdutória deste trabalho buscou abrir o apetite intelectual dos leitores a um assunto pouco discutido no Brasil, a avaliação do comportamento de carteiras de fundos previdenciários brasileiros. Este é um assunto capaz de gerar muita discussão, pois são diversas as maneiras que os administradores de carteiras de investimento usam como forma alternativa para trabalhar os recursos financeiros de terceiros no mercado. No entanto, em cada uma das alternativas, o objetivo final é o mesmo, a superação da carteira de mercado, com alcance de maiores rentabilidades, se possível com menor risco.

Esta pesquisa teve seu foco direcionado ao mercado da iniciativa privada representadas pelas EAPC´s, entre elas estão os bancos e as seguradoras. Estes considerados grandes entidades financeiras, com características de formadoras de poupança de longo prazo.

Diante do grande universo financeiro, neste trabalho houve a preocupação em avaliar a performance de carteira de cinco fundos previdenciários brasileiros, comparando seus rendimentos financeiros aos rendimentos de benchmarks específicos, como CDI e IBOVESPA, no mesmo período de janeiro de 2007 a julho de 2010.

O primeiro questionamento deste trabalho foi o porquê estudar fundos de investimento do tipo previdência complementar aberta. No capítulo 2 foram apontados alguns dos problemas sociais básicos administrados pelo governo. Por se tratar de um trabalho estatístico, dentre uma enorme variedade de assuntos sociais que poderiam ser discutidos, optou-se em limitar esta parte do trabalho considerando apenas os seguintes tópicos: o sistema financeiro nacional, onde de forma breve procurou associar uma constante deste trabalho, que está muito relacionada ao tema, o risco. Posteriormente, discutiu-se a previdência social, seguida da previdência complementar, esses dois tópicos serviram como pontos preponderantes na visualização de gargalos sociais presentes na esfera pública e a conscientização da grande necessidade de se pensar em previdência complementar como forma de complementação de renda aos contribuintes da previdência social no futuro.

Pode-se dizer que de uma maneira geral, a conclusão final contida no capítulo 2, resume-se na reflexão individual dos cidadãos sobre alguns problemas públicos vinculados a previdência
social, como arrecadação, sonegação, expectativa de vida, etc. Problemas esses, que infelizmente não se vê um horizonte próximo, capaz de dar segurança aos contribuintes. Portanto, aos leitores interessados neste assunto sugiro a continuidade desse estudo.

Outro questionamento para realização desta pesquisa se refere ao porquê de avaliar a performance desses fundos de previdência complementar aberta. A resposta para esse questionamento está presente em todo capítulo 3 - Fundamentação Teórica, cuja idéia central é que: “Não basta simplesmente investir, é preciso saber no que está investindo seu dinheiro”.

Nesta parte do trabalho são abordadas algumas técnicas estatísticas e financeiras de avaliação de performance dos cinco fundos previdenciários estudos, onde foram discutidos os seguintes tópicos: a relação entre retorno vs risco, o método de precificação de ativos - CAPM, e os índices utilizados como balizadores de performance dos fundos previdenciários, sendo eles, a razão de Sharpe e a razão de Treynor⁶.

Já no capítulo 4 deste trabalho, a organização da metodologia usada no decorrer de toda pesquisa, onde se descreveu a abordagem utilizada, o tipo de pesquisa, a unidade de análise, a base instrumental para coleta de dados, a base amostral utilizada, o tratamento dos dados e enfim, os procedimentos empíricos utilizados no trabalho. Nesta parte, o foco está nos procedimentos empíricos, citando a razão de Sharpe e a razão de Treynor, esses dois índices representam toda conclusão do trabalho.

No capítulo 5 deste trabalho foi abordada a análise de resultados, onde se apresentou toda a descrição dos dados, ou seja, dos fundos previdenciários. Avaliou também as medidas de dispersão, e o retorno ajustado ao risco, como a razão de Sharpe e a razão de Treynor, assim como o retorno esperado da carteira, representado pelo método - CAPM.

⁶ Observa-se que o capítulo 3 tem como foco a parte de conhecimento teórico do trabalho, ficando sob a responsabilidade do capítulo 5, a conclusão dos resultados.
A resposta à problemática deste trabalho é desenvolvida no decorrer de todo capítulo 5. Como revisão, reescreve-se o problema proposto para essa pesquisa: Analisar apenas a performance passada dos fundos de investimento previdenciários é suficiente para se ter percepção consistente sobre a administração do fundo ou plano de previdência complementar?

Como resposta ao problema proposto acima, os resultados dos índices de Sharpe e também de Treynor mostraram que os fundos de investimento previdenciários de renda fixa, não conseguiram apresentar performance superior ao benchmark no período. Portanto, apenas o fundo de renda variável se mostrou superior em performance ao benchmark no período. Nesse caso é importante dizer que o benchmark utilizado como balizador em ambos os fundos foi o CDI. Se utilizado como balizador o IBOVESPA, o fundo de renda variável também teria apresentado performance inferior.

Baseado na constatação do parágrafo acima se percebe que os contribuintes desses fundos previdenciários têm o direito de no mínimo contestar a real capacidade desses gestores em gerar retornos significativos aos fundos previdenciários. Portanto, é razoável dizer que a performance passada de fundos de investimento previdenciários pode ser considerada uma ferramenta importante na percepção sobre a administração do fundo ou plano de previdência complementar. Conclui-se que o objetivo final deste trabalho, analisar a performance dos fundos de investimento do tipo previdência complementar foi alcançado com êxito.

Por fim, o tema não se esgota aqui, visto a extensão do assunto podem ser criados novos caminhos, novas discussões, como exemplo, a utilização de outros benchmarks na comparação dos resultados, como Poupança, Selic, CDB, entre outros.
7. REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO
<table>
<thead>
<tr>
<th>Nº</th>
<th>Período</th>
<th>RF1</th>
<th>RF2</th>
<th>RF3</th>
<th>RF4</th>
<th>RV</th>
<th>CDI</th>
<th>IBOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan/07</td>
<td>0,87</td>
<td>0,96</td>
<td>0,99</td>
<td>0,91</td>
<td>0,54</td>
<td>10,80</td>
<td>0,38</td>
</tr>
<tr>
<td>2</td>
<td>Fev/07</td>
<td>0,67</td>
<td>0,76</td>
<td>0,79</td>
<td>0,72</td>
<td>0,43</td>
<td>0,87</td>
<td>(1,67)*</td>
</tr>
<tr>
<td>3</td>
<td>Mar/07</td>
<td>0,81</td>
<td>0,92</td>
<td>0,96</td>
<td>0,87</td>
<td>1,84</td>
<td>1,05</td>
<td>4,35</td>
</tr>
<tr>
<td>4</td>
<td>Abr/07</td>
<td>0,72</td>
<td>0,82</td>
<td>0,86</td>
<td>0,77</td>
<td>1,72</td>
<td>0,94</td>
<td>6,88</td>
</tr>
<tr>
<td>5</td>
<td>Mai/07</td>
<td>0,77</td>
<td>0,89</td>
<td>0,93</td>
<td>0,84</td>
<td>2,28</td>
<td>1,02</td>
<td>6,76</td>
</tr>
<tr>
<td>6</td>
<td>Jun/07</td>
<td>0,67</td>
<td>0,79</td>
<td>0,82</td>
<td>0,74</td>
<td>2,12</td>
<td>0,90</td>
<td>4,06</td>
</tr>
<tr>
<td>7</td>
<td>Jul/07</td>
<td>0,72</td>
<td>0,84</td>
<td>0,88</td>
<td>0,79</td>
<td>1,82</td>
<td>0,97</td>
<td>(0,38)*</td>
</tr>
<tr>
<td>8</td>
<td>Ago/07</td>
<td>0,73</td>
<td>0,87</td>
<td>0,91</td>
<td>0,81</td>
<td>1,25</td>
<td>0,99</td>
<td>0,83</td>
</tr>
<tr>
<td>9</td>
<td>Set/07</td>
<td>0,59</td>
<td>0,69</td>
<td>0,73</td>
<td>0,65</td>
<td>0,73</td>
<td>0,80</td>
<td>10,66</td>
</tr>
<tr>
<td>10</td>
<td>Out/07</td>
<td>0,68</td>
<td>0,81</td>
<td>0,84</td>
<td>0,75</td>
<td>1,24</td>
<td>0,92</td>
<td>8,02</td>
</tr>
<tr>
<td>11</td>
<td>Nov/07</td>
<td>0,62</td>
<td>0,73</td>
<td>0,77</td>
<td>0,68</td>
<td>0,84</td>
<td>0,84</td>
<td>(3,53)*</td>
</tr>
<tr>
<td>12</td>
<td>Dez/07</td>
<td>0,61</td>
<td>0,73</td>
<td>0,77</td>
<td>0,69</td>
<td>1,02</td>
<td>0,84</td>
<td>1,39</td>
</tr>
<tr>
<td>13</td>
<td>Jan/08</td>
<td>0,67</td>
<td>0,81</td>
<td>0,85</td>
<td>0,75</td>
<td>0,73</td>
<td>0,92</td>
<td>(6,90)*</td>
</tr>
<tr>
<td>14</td>
<td>Fev/08</td>
<td>0,58</td>
<td>0,70</td>
<td>0,73</td>
<td>0,65</td>
<td>1,60</td>
<td>0,79</td>
<td>6,70</td>
</tr>
<tr>
<td>15</td>
<td>Mar/08</td>
<td>0,62</td>
<td>0,73</td>
<td>0,77</td>
<td>0,68</td>
<td>0,32</td>
<td>0,84</td>
<td>4,00</td>
</tr>
<tr>
<td>16</td>
<td>Abr/08</td>
<td>0,66</td>
<td>0,78</td>
<td>0,83</td>
<td>0,73</td>
<td>1,63</td>
<td>0,90</td>
<td>11,30</td>
</tr>
<tr>
<td>17</td>
<td>Mai/08</td>
<td>0,64</td>
<td>0,76</td>
<td>0,80</td>
<td>0,71</td>
<td>1,52</td>
<td>0,87</td>
<td>7,00</td>
</tr>
<tr>
<td>18</td>
<td>Jun/08</td>
<td>0,70</td>
<td>0,83</td>
<td>0,87</td>
<td>0,78</td>
<td>0,44</td>
<td>0,95</td>
<td>(10,40)*</td>
</tr>
<tr>
<td>19</td>
<td>Jul/08</td>
<td>0,80</td>
<td>0,92</td>
<td>0,98</td>
<td>0,88</td>
<td>0,06</td>
<td>1,06</td>
<td>(8,50)*</td>
</tr>
<tr>
<td>20</td>
<td>Ago/08</td>
<td>0,77</td>
<td>0,89</td>
<td>0,94</td>
<td>0,84</td>
<td>0,45</td>
<td>1,01</td>
<td>(6,40)*</td>
</tr>
<tr>
<td>21</td>
<td>Set/08</td>
<td>0,84</td>
<td>0,98</td>
<td>1,03</td>
<td>0,93</td>
<td>0,25</td>
<td>1,10</td>
<td>(11,00)*</td>
</tr>
<tr>
<td>22</td>
<td>Out/08</td>
<td>0,91</td>
<td>1,04</td>
<td>1,11</td>
<td>1,00</td>
<td>(0,31)*</td>
<td>1,17</td>
<td>(25,00)*</td>
</tr>
<tr>
<td>23</td>
<td>Nov/08</td>
<td>0,80</td>
<td>0,91</td>
<td>0,95</td>
<td>0,87</td>
<td>0,83</td>
<td>1,00</td>
<td>(1,80)*</td>
</tr>
<tr>
<td>24</td>
<td>Dez/08</td>
<td>0,86</td>
<td>0,98</td>
<td>1,04</td>
<td>0,95</td>
<td>0,98</td>
<td>1,11</td>
<td>2,60</td>
</tr>
<tr>
<td>25</td>
<td>Jan/09</td>
<td>0,80</td>
<td>0,92</td>
<td>0,94</td>
<td>0,87</td>
<td>1,16</td>
<td>1,04</td>
<td>4,70</td>
</tr>
<tr>
<td>26</td>
<td>Fev/09</td>
<td>0,65</td>
<td>0,74</td>
<td>0,79</td>
<td>0,70</td>
<td>0,78</td>
<td>0,85</td>
<td>(2,80)*</td>
</tr>
<tr>
<td>27</td>
<td>Mar/09</td>
<td>0,72</td>
<td>0,83</td>
<td>0,89</td>
<td>0,78</td>
<td>1,17</td>
<td>0,97</td>
<td>7,20</td>
</tr>
<tr>
<td>28</td>
<td>Abr/09</td>
<td>0,61</td>
<td>0,72</td>
<td>0,77</td>
<td>0,67</td>
<td>1,35</td>
<td>0,84</td>
<td>15,50</td>
</tr>
<tr>
<td>29</td>
<td>Mai/09</td>
<td>0,54</td>
<td>0,64</td>
<td>0,69</td>
<td>0,59</td>
<td>1,63</td>
<td>0,77</td>
<td>12,50</td>
</tr>
<tr>
<td>30</td>
<td>Jun/09</td>
<td>0,53</td>
<td>0,64</td>
<td>0,69</td>
<td>0,59</td>
<td>0,24</td>
<td>0,75</td>
<td>(3,30)*</td>
</tr>
<tr>
<td>31</td>
<td>Jul/09</td>
<td>0,53</td>
<td>0,65</td>
<td>0,71</td>
<td>0,61</td>
<td>1,02</td>
<td>0,78</td>
<td>6,40</td>
</tr>
<tr>
<td>32</td>
<td>Ago/09</td>
<td>0,46</td>
<td>0,57</td>
<td>0,62</td>
<td>0,53</td>
<td>0,64</td>
<td>0,69</td>
<td>3,10</td>
</tr>
<tr>
<td>33</td>
<td>Set/09</td>
<td>0,46</td>
<td>0,58</td>
<td>0,63</td>
<td>0,53</td>
<td>1,20</td>
<td>0,69</td>
<td>8,90</td>
</tr>
<tr>
<td>34</td>
<td>Out/09</td>
<td>0,46</td>
<td>0,58</td>
<td>0,63</td>
<td>0,53</td>
<td>0,55</td>
<td>0,69</td>
<td>0,05</td>
</tr>
<tr>
<td>35</td>
<td>Nov/09</td>
<td>0,44</td>
<td>0,55</td>
<td>0,60</td>
<td>0,51</td>
<td>1,56</td>
<td>0,66</td>
<td>8,90</td>
</tr>
<tr>
<td>36</td>
<td>Dez/09</td>
<td>0,49</td>
<td>0,60</td>
<td>0,66</td>
<td>0,56</td>
<td>0,76</td>
<td>0,72</td>
<td>2,30</td>
</tr>
<tr>
<td>37</td>
<td>Jan/10</td>
<td>0,44</td>
<td>0,55</td>
<td>0,59</td>
<td>0,50</td>
<td>0,12</td>
<td>0,66</td>
<td>(4,60)*</td>
</tr>
<tr>
<td></td>
<td>Fev/10</td>
<td>Mar/10</td>
<td>Abr/10</td>
<td>Mai/10</td>
<td>Jun/10</td>
<td>Jul/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0,40</td>
<td>0,51</td>
<td>0,45</td>
<td>0,53</td>
<td>0,57</td>
<td>0,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0,50</td>
<td>0,64</td>
<td>0,56</td>
<td>0,65</td>
<td>0,69</td>
<td>0,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,54</td>
<td>0,69</td>
<td>0,61</td>
<td>0,70</td>
<td>0,73</td>
<td>0,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0,46</td>
<td>0,59</td>
<td>0,52</td>
<td>0,60</td>
<td>0,64</td>
<td>0,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0,36</td>
<td>1,22</td>
<td>0,16</td>
<td>(0.71)*</td>
<td>0,11</td>
<td>1,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0,59</td>
<td>0,76</td>
<td>0,66</td>
<td>0,75</td>
<td>0,79</td>
<td>0,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,70</td>
<td>5,80</td>
<td>(4,00)*</td>
<td>(6,60)*</td>
<td>(3,30)*</td>
<td>10,80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor deste trabalho.

*Valores entre parênteses na cor vermelha referem-se a valores negativos.
Conforme consulta eletrônica em 24 de janeiro de 2011 em <http://fitchratings.com.br>, os *ratings* são considerados técnicas para avaliação de risco de fundos de investimento, se baseando em fatores como: qualidade de crédito, diversificação dos ativos na carteira, pontos fortes na administração e habilidades operacionais.