FATORES DE VIRULÊNCIA, SOROTIPOS E SUSCEPTIBILIDADE ANTIMICROBIANA DE AMOSTRAS DE *Escherichia coli* ISOLADAS DE ALIMENTOS NO ESTADO DE MINAS GERAIS, BRASIL

Leandro Leão Faúla

Orientadora: Prof. Dra. Mônica Maria Oliveira Pinho Cerqueira

Co-orientadora: Prof. Dra. Paula Prazeres Magalhães

Dissertação apresentada ao Programa de Pós-Graduação em Ciência Animal da Universidade Federal de Minas Gerais, como requisito, para obtenção do título de Mestre em Ciência Animal.

Belo Horizonte - Minas Gerais

2016
Dados Internacionais da Catalogação-na-Publicação (CIP)
FOLHA DE APROVAÇÃO

LEANDRO LEÃO FAÚLA

Dissertação submetida à banca examinadora designada pelo Colegiado do Programa de Pós-Graduação em CIÊNCIA ANIMAL, como requisito para obtenção do grau de MESTRE em CIÊNCIA ANIMAL, área de concentração TECNOLOGIA E INSPEÇÃO DE PRODUTOS DE ORIGEM ANIMAL.

Aprovada em 17 de Março de 2016, pela banca constituída pelos membros:

Profª. Mônica Maria Oliveira Pinho Cerqueira
Presidente - Orientador

Dr. Luís Fernando dos Santos
Instituto Adolfo Lutz - SP

Prof. Marcelo Resende de Souza
Escola de Veterinária - UFMG

Profª. Paula Prazeres Magalhães
Instituto de Ciências Biológicas - ICB
AGRADECIMENTOS

A Deus, por mais uma vez, conceder-me a oportunidade de aprender e ensinar;

Aos meus queridos pais e familiares pelo apoio e amor incondicional;

Ao Fernando por encorajar-me e acolher-me nos momentos difíceis e de dúvidas;

Às professoras Mônica e Paula pelo exemplo profissional, respeito, confiança e
generosidade ao compartilharem seus conhecimentos, auxiliando-me nesta jornada,
muitas vezes, marcada pelo imprevisto, mas também de apazigáveis frutos;

Aos meus colegas de trabalho da FUNED Ana Cláudia, Ana Carolina, Ana Elisa, André,
Carlene, Gracielle, Luís Renato e Junara, parceiros na luta diária contra os embaraços da
vida profissional;

Aos novos colegas do MOA, em especial à Paty e João, e aos professores Luiz e Simone,
por transmitirem seus conhecimentos e confiança nos momentos de incerteza;

Ao Luís Fernando e sua equipe do IAL pela prestatividade e cooperação;

Aos membros da banca examinadora Luís Fernando, Marcelo, Paula e Ricardo pela
valiosa contribuição; e

À Fundação Ezequiel Dias, Fundação de Apoio a Pesquisa de Minas Gerais e à
Universidade Federal de Minas Gerais - Escola de Medicina Veterinária, por abrirem as
portas para a consecução deste trabalho.
SUMÁRIO

LISTA DE ABREVIATURAS.. III
LISTA DE FIGURAS E ANEXOS.. V
LISTA DE TABELAS.. VI
RESUMO.. VII
ABSTRACT... VIII

1. INTRODUÇÃO ... 13

2. OBJETIVOS ... 18
 2.1 Geral .. 18
 2.2 Específicos ... 18

3. REVISÃO DE LITERATURA... 19
 3.1 Escherichia coli .. 19
 3.1.1 Escherichia coli comensal ... 21
 3.1.2 Escherichia coli em alimentos ... 22
 3.1.3 Escherichia coli diarreigênica ... 23
 3.1.3.1 Escherichia coli Enteropatogênica (EPEC) 24
 3.1.3.2 Escherichia coli Enterotoxigênica (ETEC) 26
 3.1.3.3 Escherichia coli produtora de Toxina Shiga (STEC) 28
 3.1.3.4 Escherichia coli Enteroinvasa (EIEC) 31
 3.1.3.5 Escherichia coli Enteroagregativa (EAEC) 31
 3.1.3.6 Escherichia coli Difusamente Aderente (DAEC) 33
 3.1.3.7. Outros patotipos de Escherichia coli diarreigênica 33
 3.1.3.7. Outros patotipos de Escherichia coli diarreigênica 33
 3.2 Sorotipos de Escherichia coli .. 35
 3.3 Susceptibilidade de Escherichia coli aos antimicrobianos e às classes terapêuticas 36
4. MATERIAL E MÉTODOS ... 40

4.1 Obtenção das amostras .. 40

4.2 Análise microbiológica do grupo coliformes 42
 4.2.1 Contagem de coliformes a 45ºC nos alimentos 42
 4.2.2 Isolamento das amostras de Escherichia coli 42

4.3 Análise dos perfis de susceptibilidade aos antimicrobianos e determinação do índice de Multipla Resistência Antimicrobina (MAR) ... 43

4.4 Análise genética ... 44
 4.4.1 Extração do DNA .. 44
 4.4.2 Pesquisa dos marcadores de virulência pela reação em cadeia da polimerase (PCR) . 45
 4.4.3 Eletroforese em gel de agarose 46

4.5 Sorotipagem de E. coli .. 46

5. RESULTADOS E DISCUSSÃO ... 48

5.1 Dos alimentos analisados e dos resultados microbiológicos 48

5.2 Da análise do perfil de susceptibilidade antimicrobiana de Escherichia coli 55

5.3 Da pesquisa dos marcadores de virulência e sorotipos de Escherichia coli 64

6. CONCLUSÕES .. 73

7. REFERÊNCIAS BIBLIOGRÁFICAS ... 74

8. ANEXOS .. 91
AA: Adesão agregativa
A/E: Attaching and effacing
ANVISA: Agência Nacional de Vigilância Sanitária
BFP: Bundle forming pili
BHI: Brain Heart Infusion
cAMP: adenosina monofostato cíclico
cGMP: guanosina monofosfato cíclico
CVE: Centro de Vigilância Epidemiológica
CDC: Centers for Disease Control and Prevention
CFA: Fator de colonização
CMI: Concentração Mínima Inibitória
CPS: Polissacarídeos capsulares
DAEC: Escherichia coli difusamente aderente
DTA: Doença Transmitida por Alimentos
EAF: EPEC Adherence factor
EC: Caldo Escherichia coli
E. coli: Escherichia coli
EAEC: Escherichia coli enteroagregativa
EHEC: Escherichia coli enterohemorrágica
EIEC: Escherichia coli enteroinvasiva
EPEC: Escherichia coli enteropatogênica
ETEC: Escherichia coli enterotoxigênica
ExPEC: Escherichia coli patogênica extra intestinal
FAO: Organização das Nações Unidas para Alimentação e Agricultura
LA: Adesão localizada
LACEN: Laboratório Central de Saúde Pública
LEE: *Locus of enterocyte effacement*
LPS: lipopolissacarídeo
LT: Enterotoxina termolábil
MNP: Número Mais Provável
OIE: Organização Mundial da Saúde Animal
OMS: Organização Mundial de Saúde
PCR: Reação em cadeia da polimerase
PROGVISA: Programa de Monitoramento da Qualidade da Vigilância Sanitária
ST: Enterotoxina termoestável
STEC: *Escherichia coli* produtora de Toxina Shiga
STx: Toxina Shiga
TSA: Ágar Triptona Soja
LISTA DE FIGURAS E ANEXOS

FIGURA 1: Mapa de distribuição das 28 Superintendências Regionais de Saúde no Estado de Minas Gerais ... 41

FIGURA 2: Perfil de susceptibilidade antimicrobiana de 220 amostras de *Escherichia coli*, isoladas de alimentos coletados pelo PROGVISA e de surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerais, e analisadas frente a 17 antimicrobianos e cinco classes terapêuticas .. 57

FIGURA 3: Percentual de amostras de *E. coli* (n=60), isoladas de alimentos, resistentes ou com perfil de resistência intermediária a 17 antimicrobianos ... 61

FIGURA 4: Percentual de amostras de *E. coli* (n = 60), isoladas de alimentos, resistentes ou com perfil de resistência intermediária frente a cinco classes terapêuticas............. 62

FIGURA 5: Eletroforese em gel de agarose. Canaleta 01: padrão de peso molecular (100 pb); canaleta 02: controle positivo *E. coli* H10407, com amplicons de 273 pb (*eltB*), 166 pb (*estA*) e 120 pb (*st1*); canaleta 03: controle negativo *E. coli* ATCC 25922; canaletas 04, 05 e 06 amostras negativas; canaleta 07 amostra 3881-A, positiva para os marcadores *estB*, *estA*, *st1* ... 70

ANEXO A: Quantitativo de alimentos coletados pelo PROGVISA e nos surtos de DTA ocorridos em Minas Gerais, no período de janeiro de 2014 a julho de 2015, e reprovados/contaminados por pelo menos um dos seguintes padrões microbiológicos: *Bacillus cereus*, coliformes a 45ºC, clostrídio sulfito redutor, estafilococos coagulase positiva (E.C.P), *Listeria monocytogenes e Salmonella* spp ... 91

ANEXO B: Quantitativo de alimentos coletados pelo PROGVISA, no período de janeiro de 2014 a julho de 2015, analisados e reprovados nos seguintes padrões microbiológicos: *Bacillus cereus*, coliformes a 45ºC, clostrídio sulfito redutor (C.S.R), estafilococos coagulase positiva (E.C.P), *Listeria monocytogenes e Salmonella* spp 92

ANEXO C: Quantitativo de alimentos coletados nos surtos de DTA ocorridos em Minas Gerais, no período de janeiro de 2014 a julho de 2015, analisados e contaminados com pelo menos um dos seguintes micro-organismos: *Bacillus cereus*, coliformes a 45ºC, clostrídio sulfito redutor (C.S.R), estafilococos coagulase positiva (E.C.P), *Listeria monocytogenes e Salmonella* spp ... 93
LISTA DE TABELAS

QUADRO 1: Aspectos epidemiológicos, patogênicos, clínicos, terapêuticos e de diagnósticos molecular relacionados as Escherichia coli diarreogênicas.......................... 34

QUADRO 2: Conteúdo dos poços do cartão AST-N239 VITEK II Compact (bioMérieux)...44

QUADRO 3: Reações de amplificação empregadas para pesquisa de Escherichia coli diarreogênicas: alvo, patotipos, fatores virulência, primers, programas e amplicons47

TABELA 1: Quantitativo de alimentos coletados pelo PROGVISA-MG e nos surtos de DTA ocorridos em Minas Gerais, no período de janeiro de 2014 a julho de 2015, e analisados quanto ao parâmetro de coliformes a 45ºC ... 48

TABELA 2: Descrição dos alimentos coletados pelo PROGVISA entre janeiro/2014 a julho/2015, no Estado de Minas Gerias, cujo quantitativo de coliformes a 45ºC pela técnica do Número Mais Provável foi superior ao limite do método (3 NMP/g ou mL)..50

TABELA 3: Descrição dos alimentos coletados nos surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerias, cujo quantitativo de coliformes a 45ºC pela técnica do Número Mais Provável foi superior ao limite do método (3 NMP/g ou mL)...52

TABELA 4: Quantitativo de alimentos coletados pelo PROGVISA e nos surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerias, e os respectivos percentuais de contaminação por coliformes a 45ºC e Escherichia coli. ..53

TABELA 5: Quantitativo de alimentos coletados pelo PROGVISA-MG e nos surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerias, e que apresentaram pelo menos uma amostra de Escherichia. coli resistente e/ou com perfil de resistência intermediária..56

TABELA 6: Descrição da origem, natureza do alimento, quantitativo de coliformes a 45ºC e dos fatores fenotípicos e genotípicos das amostras de ETEC. 64
RESUMO

A ocorrência de Doenças Transmitidas por Alimentar (DTA), relevante problema de Saúde Pública, vem aumentando de modo significativo não só no Brasil, mas em diversos países. No intuito de assegurar a qualidade e a inocuidade dos alimentos, várias iniciativas institucionais, legais e comunitárias, vêm sendo desenvolvidas em nosso País. Dentre estas, destaca-se o Programa de Monitoramento da Qualidade de Alimentos (PROGVISA-MG), um importante instrumento para o planejamento e a estruturação das ações da Vigilância Sanitária em Minas Gerais e, além disso, o cumprimento das diretrizes nacionais e estaduais no que se refere à prevenção e investigação dos surtos de DTA. Dentre os principais contaminantes microbiológicos de alimentos destaca-se *Escherichia coli*, bactéria que faz parte da microbiota intestinal dos seres humanos e animais de sangue quente, sendo constantemente eliminada no ambiente, contaminando o solo, a água e os alimentos. Essa bactéria, além de ser empregada como indicador sanitário, pode também ocasionar quadros de DTA, já que existem diversas linhagens de *E. coli* diarreogênica para o ser humano e animais. Nesse contexto, objetivamos identificar a presença de *E. coli* em alimentos coletados pelo PROGVISA-MG e em surtos de DTA ocorridos em Minas Gerais, e avaliar a susceptibilidade antimicrobiana, a presença de fatores de virulência (*eae, bfpA, eltB, estA, st1, stx1, stx2, ipaH e aatA*) e sorotipos de *E. coli* diarreogênica. Em 51 (12,9%) dos 396 alimentos analisados, detectou-se a presença do grupo coliformes a 45ºC e em 41 (10,3%) a presença de *E. coli*, principalmente entre os produtos lácteos e as refeições de pronto consumo. Por meio da análise de 220 amostras de *E. coli* quanto ao perfil de resistência antimicrobiana, observou-se que 60 (27,3%) mostraram-se resistentes ou com perfil de resistência intermediária a pelo menos um dos antimicrobianos testados. Os fármacos da classe aminoglicosídeos (amicacina e gentamicina) mostraram-se mais eficazes; já aqueles da classe β-lactâmicos, em especial a ampicilina, apresentaram maior percentual de amostras resistentes, 10,9%. A resistência a mais de um antimicrobiano e a mais de uma classe terapêutica foi observada entre 25 (41,7%) e 8 (13,3%) amostras, respectivamente. A multirresistência antimicrobiana, avaliada conforme índice MAR (Multiple Antibiotic Restistence), foi observada em 6 (10%) amostras. Somente uma (0,5%) amostra mostrou-se produtora de EBSL (β lactamase de espectro estendido). Quanto aos fatores de virulência, não foram identificados genes característicos dos patotipos de EPEC, STEC, EAEC e EIEC. A presença do patotipo ETEC limitou-se a duas amostras (0,9%), isoladas de uma galinhada (surto de DTA) e de um pão de queijo (PROGVISA), ambas contendo dos genes *eltB, estA, st1*, responsáveis pela produção das enterotoxinas LT, STp e STh, respectivamente, e caracterizadas como sorotipos O9:H10 e O9:H33, até o momento, não evidenciados em *E. coli* isoladas de alimentos.

Palavras chaves: *Escherichia coli* diarreogênica; susceptibilidade antimicrobiana; alimentos; surtos de Doença de transmissão Alimentar
ABSTRACT

Occurrence of foodborne diseases, relevant public health problem, has increased significantly not only in Brazil but also in several countries. In order to ensure food quality and safety, many institutional initiatives, legal and community, have been developed in our country. Among these, we highlight the Food Quality Monitoring Program (called PROGVISA-MG), an important instrument for planning and structuring actions of Health Surveillance in Minas Gerais state and, in addition, compliance with national and state guidelines in as regarding the prevention and investigation of foodborne disease outbreaks. Among the main microbial foods contaminants highlight to Escherichia coli, bacterium that is part of the humans intestinal tract and warm-blooded animals, being constantly eliminated in the environment, polluting the soil, water and food. These bacteria, beises being used as a health indicator, may also cause foodborne diseases, since there are many strains of diarrheagenic E. coli to humans and animals. In this context, we aimed to identify the presence of E. coli in food collected by Food Quality Monitoring Program and foodborne diseases outbreaks in Minas Gerais state, and evaluate them for antimicrobial susceptibility, the presence of virulence factors (eae, bfpA, eltB, estA, st1, stx1, stx2, ipaH e aatA) and serotypes of diarrheagenic E. coli. In 51 (12.9%) of 396 foods analyzed, was detected the presence of the coliform group 45°C and 41 (10.3%) of the presence of E. coli, mainly among dairy products and meals ready to consumption. By analysis of 220 strains on the antimicrobial susceptibility profile, it was observed that 60 (27.3%) showed resistance or intermediate resistance profile of at least one antimicrobial agent. The drugs of the class of aminoglycosides (amikacin and gentamicin) were more effective, those of the β-lactam class, especially ampicillin, showed the highest percentage of resistant strains, 10.9%. The resistance to more than one antimicrobial agent and more than one therapeutic group was observed in 25 (41.7%) 8 (13.3%) strains, respectively. The multidrug resistance, measured by index MAR (Multiple Antibiotic Resistence) was observed in 6 (10%) sample. Only one strain was producing EBSL (extended spectrum β-lactamase). For virulence factors, it was not identified characteristic genes of EPEC, STEC, EAEC and EIEC pathotypes. The presence of ETEC characteristic pathotype was limited to two strains (0.9%), isolated from a meal made by chicken (from a foodborne diseases outbreaks) and the other a cheese bread (from the the Food Quality Monitoring Program), both containing the genes eltB, estA, st1, responsible for the production of enterotoxin LT, STp and STh, respectively, and characterized as serotypes O9: H10 and O9: H33, not seen in E. coli isolated from food samples yet.

Key words: Escherichia coli diarrheagenic, antimicrobial susceptibility, food, foodborne outbreakes
1. INTRODUÇÃO

Identificar com precisão o período em que a civilização humana tomou conhecimento da presença de micro-organismos em alimentos é papel bastante laborioso e controverso. Há, porém, evidências de que tal percepção tenha ocorrido na era pré-científica (que precede a bacteriologia), há, aproximadamente, 10 mil anos atrás, quando teve início o período da produção de alimentos. Esse período é marcado por inúmeros relatos sobre a deterioração dos alimentos e a transmissão de doenças de origem alimentar em diversas civilizações. Entretanto, somente em 1837, Pasteur conseguiu demonstrar, pela primeira vez, que a deterioração do leite era causada por micro-organismos e que a aplicação de calor era suficiente para destruição dos mesmos e preservação do alimento. Este processo é conhecido até os dias atuais como pasteurização (JAY, 2005).

Desde então, e em especial nas últimas décadas, o ser humano tem se preocupado com a presença dos micro-organismos nos alimentos. Tal preocupação visa garantir a inocuidade e a qualidade dos alimentos, a fim de atender a crescente demanda da população por tais requisitos. No contexto da inocuidade, as Doenças de Transmissão Alimentar (DTA), por exemplo, apresentam abrangência mundial e destacam-se como um dos problemas mais frequentes em Saúde Pública. As constantes modificações no processo produtivo em busca de novos produtos e mercados, o aumento na produtividade, a existência de grupos populacionais vulneráveis, o processo de urbanização desordenado, o aumento no consumo de alimentos fora do ambiente domiciliar, a crescente utilização de alimentos industrializados e a inexistência ou fragilidade de Políticas Sanitárias em toda a cadeia de produção de alimentos são fatores que têm contribuído para o aumento na incidência das DTA (CVE, 2008; BRASIL, 2010; OLIVEIRA, 2010).

Em Minas Gerais, por sua vez, de 2010 a 2014, foram registradas 4.662 pessoas doentes, 659 hospitalizadas e três vítimas fatais ocasionadas por surtos de DTA. Sabe-se que, tanto os dados de origem nacional como estadual mencionados acima são subestimados, pois nem todos os comensais expostos são localizados para os estudos epidemiológicos. Além disso, há uma clara subnotificação dos eventos de DTA que ocorrem no País (FAULA et al., 2015).

Frente a essa realidade, percebe-se no cenário mundial, que a busca pelo consumo de alimentos inócuos é uma demanda crescente, visto ser essencial para a promoção da saúde e prevenção de doenças no ser humano. Nesse sentido, no Brasil, várias iniciativas institucionais, legais e comunitárias, com objetivo de assegurar a qualidade e a segurança dos alimentos, vêm sendo consolidadas desde a promulgação da Constituição da República Federativa do Brasil, em 1988. Dentre estas, destaca-se a publicação da Lei nº 8.080 de 19 de setembro de 1990, que regulamentou o Sistema Único de Saúde (SUS) e dispôs sobre a execução Nacional das ações de Vigilância Sanitária (BRASIL, 1990).

Complementando as ações mencionadas acima, foi publicada a Lei nº 9.782, de 26 de janeiro de 1999, que definiu o Sistema Nacional de Vigilância Sanitária e criou a Agência Nacional de Vigilância Sanitária (ANVISA), cuja finalidade precípua é exercer atividades de regulação, normalização, controle e fiscalização na área de Vigilância Sanitária. No mesmo ano, por meio da Lei nº 13.317, de 24 de setembro, foi publicado o Código Sanitário de Saúde de Minas Gerais, fortalecendo as ações de Vigilância em Saúde e, em especial, as de Vigilância Sanitária. Outra relevante tratativa legal se deu por meio da Resolução RDC nº 12, de 02 de janeiro de 2001, da ANVISA, que aprovou o Regulamento Técnico sobre os Padrões Microbiológicos em Alimentos, reforçando, assim, a constante necessidade de aperfeiçoamento das ações de controle sanitário na área de alimentos, com vistas à proteção da saúde humana (BRASIL, 1999; SES-MG, 1999; BRASIL 2001).

Corroborando as ações nacionais, Minas Gerais, a partir dos anos 2000, iniciou as atividades do Programa de Monitoramento da Qualidade dos Alimentos da Vigilância Sanitária (PROGVISA/MG), um importante instrumento para o planejamento e a estruturação das ações da Vigilância Sanitária no Estado e municípios, cuja finalidade baseia-se no monitoramento da qualidade dos alimentos que são comercializados no
Estado. Atualmente, o programa conta com a participação de 28 Superintendências Regionais de Saúde (SRS), 346 Vigilância Sanitárias Municipais e do Laboratório Central de Saúde Pública de Minas Gerais (LACEN-MG). Todos desenvolvem, periodicamente, ações de gerenciamento de risco sanitário por meio do monitoramento da qualidade dos alimentos (SES-MG, 2011).

Como visto, muitos são os marcos legais e órgãos envolvidos no monitoramento da qualidade dos alimentos, uma vez que estes são, constantemente, expostos a contaminação física, química e microbiológica, o que acarreta perda de qualidade e risco à saúde dos consumidores. Profissionais da área de alimentos afirmam que a contaminação do tipo microbiológica é, sem dúvida, a mais frequente e de maior relevância para a Saúde Pública (GERMANO & GERMANO, 2003). Dados epidemiológicos dos EUA e do Brasil, demonstram que os micro-organismos são considerados os principais responsáveis pela ocorrência de surtos de DTA. No Brasil, por exemplo, agentes microbianos foram responsáveis por 84% dos surtos de DTA ocorridos de 1998 a 2006 (OLIVEIRA et al., 2010).

Dentre os principais contaminantes microbiológicos destaca-se *Escherichia coli*, bactéria que faz parte da microbiota intestinal dos seres humanos e animais de sangue quente, sendo, constantemente, eliminada no ambiente, contaminando o solo, a água e os alimentos (SILVA et al., 2010). Entretanto, amostras exógenas de *E. coli* podem se comportar como patógenos, associados a doenças infectocontagiosas bastante prevalentes, como a enterite aguda e doenças extra-intestinais, a exemplo da infecção do trato urinário e meningite neonatal. Surtos por *E. coli* diarreigênica são comuns em países desenvolvidos e em desenvolvimento e, em alguns casos, com consequências fatais. Certos patotipos são considerados grave problema de Saúde Pública e motivo de grande preocupação, uma vez que a baixa dose infectante e a ampla veiculação por meio de diversos alimentos e água, os tornam de difícil controle (CROXEN et al., 2013).

E. coli diarreigênica é considerada um dos principais patógenos causadores de diarreia no mundo. Dados recentes, obtidos em um amplo estudo pelo Global Enteric Multi-Center Study (GEMS), realizado na África e Ásia, apontam que *E. coli* enteroxigênica (ETEC) e *Shigella* estão entre as quatro principais causas de diarreia moderada a grave naquelas regiões (CROXEN et al., 2013). Segundo BLANCO et al. (2006), cerca de 630 milhões de casos de diarreia no mundo e, aproximadamente, 775.000
mortes por ano, são ocasionados por *E. coli* diarreogênica. SCALLAN *et al.* (2011) demonstraram em seu estudo que, nos EUA, entre os anos de 2000 e 2008, *E. coli* diarreogênica acometeu aproximadamente 191.000 pessoas por ano, sendo considerada o sexto agente mais isolado em surtos de DTA. Dados dessa natureza reforçam a necessidade de monitoramento e controle desse patógeno na cadeia produtiva de alimentos.

Além dos casos diretos de DTA ocasionados por amostras de *E. coli* diarreogênica, outro grave problema de Saúde Pública relacionado à espécie diz respeito à disseminação da resistência bacteriana aos antimicrobianos. Segundo RIBEIRO (2013), o termo resistente se refere à aqueles micro-organismos que não são inibidos pelas concentrações antimicrobianas habitualmente alcançadas no sangue ou tecidos ou àqueles que apresentam mecanismos de resistência específicos para o fármaco estudado, não existindo adequada resposta clínica quando usado como tratamento.

Embora milhões de pessoas e animais venham se beneficiando direta ou indiretamente dos agentes antimicrobianos em tratamentos curativo e preventivo, sabe-se que o seu uso indevido, geralmente sob a forma abusiva e/ou desnecessária, tem resultado em uma pressão seletiva sobre as bactérias, levando à emergência e disseminação da resistência bacteriana aos antimicrobianos (QUINTEIRA, 1999).

Segundo a Organização Ambiental Internacional *Natural Resources Defense Council* (NRDC), anualmente, 2 milhões de pessoas contraem patógenos bacterianos que apresentam resistência a algum tipo de antimicrobiano e, destas, 23.000 morrem em função dessa resistência. Além disso, 55 bilhões de dólares são perdidos anualmente com gastos hospitalares e custos com perdas de produtividade (NDRC, 2015). A Organização Mundial de Saúde (OMS), por sua vez, estima que cerca de 75% dos países não possuem nenhum projeto ou ferramenta para conter a resistência bacteriana aos antimicrobianos e que até 2050, ocorrerá cerca de 10 milhões de mortes por ano em todo o mundo em consequência desta situação (WHO, 2015).

Portanto, desde 1997, a OMS, a Organização das Nações Unidas para Alimentação e Agricultura (FAO), a Organização Mundial de Saúde Animal (OIE) e a Comissão do *Codex Alimentarius* têm convocado inúmeras reuniões para discutir as principais causas, os mecanismos de controle e os impactos na saúde humana e animal da resistência bacteriana aos antimicrobianos (QUIN *et al*., 2002).
Como visto, os alimentos são constantemente expostos a contaminação física, química e microbiológica, o que acarreta perda de qualidade e risco à saúde dos consumidores. Em Minas Gerais, alimentos provenientes do PROGVISA, bem como aqueles envolvidos em surtos de DTA, são rotineiramente analisados quanto à presença de *E. coli* pelo LACEN-MG. Todavia, não há dados que relatem a presença de *E. coli* diarreíogênica entre as amostras que vêm sendo continuamente isoladas destes alimentos.

Frente ao exposto e considerando a importância dos surtos de DTA no contexto de Saúde Pública; as evidências de *E. coli* diarreíogênica como um dos principais agentes etiológicos das DTA; os impactos da resistência bacteriana aos antimicrobianos; e a necessidade de se dispor de resultados proficientes às ações futuras da Vigilância Sanitária e Epidemiológica do Estado de Minas Gerais, resultados que permitam embasar um adequado planejamento do PROGVISA, bem como contribuir para as investigações de surtos de DTA, faz-se necessária uma caracterização fenotípica e genotípica das amostras de *E. coli* que continuamente vêm sendo isoladas de alimentos no Estado.
2. OBJETIVOS

2.1 Geral

Avaliar o potencial risco da ocorrência de *E. coli* multirresistente e diarreigênica em alimentos destinados ao consumo humano.

2.2 Específicos

- Determinar e quantificar os coliformes a 45ºC;
- Avaliar a presença de *E. coli* entre os coliformes a 45ºC;
- Identificar o perfil de susceptibilidade antimicrobiana;
- Determinar o índice de Múltipla Resistência Antimicrobiana (MAR);
- Identificar os marcadores de virulência *eae, bfpA, eltB, estA, st1, stx1, stx2, ipaH* e *aatA*, que definem os patotipos de *E. coli* diarreigênica; e
- Identificar os sorotipos das amostras de *E. coli* diarreigênica.
3. REVISÃO DE LITERATURA

3.1 *Escherichia coli*

E. coli, inicialmente denominada “*Bacterium coli commune*”, foi isolada pela primeira vez em 1885, a partir de fezes de uma criança, pelo alemão Theodor Escheric. O nome *E. coli*, em homenagem ao seu descobridor, somente foi reconhecido em meados de 1954 (KAPER et al., 2004). Trata-se de uma bactéria que tem como habitat natural o trato intestinal dos seres humanos e animais de sangue quente, sendo considerada importante na manutenção da fisiologia intestinal, uma vez que inibe bactérias nocivas e participa da síntese de várias vitaminas e outras substâncias (GERMANO & GERMANO, 2003).

E. coli é descrita como um bastonete Gram-negativo, não esporulado, aeróbio ou anaeróbio facultativo, oxidade negativa, catalase positiva, a maioria móvel, em função de seus flagelos periquitrão, e capaz fermentar glicose com produção de gás e ácido. No que se refere à temperatura de crescimento, a espécie é considerada mesófila, multiplicando-se entre 7°C e 46°C, com temperatura ótima de 37°C; desenvolve-se em alimentos com atividade de água mínima de 0,95 e pH na faixa de 5,5 a 7,5, com o mínimo de desenvolvimento entre 4,0 e 4,5 (AVILA, 2011).

Estima-se que o trato gastrointestinal dos seres humanos abrigue uma microbiota comensal de 500 a 1.000 espécies diferentes de bactérias (BARBARA et al., 2005). Segundo GERMANO & GERMANO (2003), *E. coli* representa até 80% da microbiota intestinal humana, sendo eliminada diariamente por meio das fezes, contaminando o solo, a água e os alimentos. GONÇALVES et al. (2013), por sua vez, relata que a microbiota intestinal é composta pelos filos Firmicutes e Bacteriodetes. Estes são constituídos pelos gêneros *Clostridium*, *Streptococcus*, *Lactobacillus* e várias espécies de bacterióides, incluindo *B. fragilis* e *B. ovatus*. As bactérias restantes, que representam menos de 10% do total, pertencem aos filos Proteobactéria, do qual faz parte *Escherichia coli*; Actinobactéria, que inclui *Bifidobacterium*; Fusobactéria, Verrucomicrobia e Cianobactéria. De acordo com NATARO & KAPER (1998) e FRANZOLIN et al. (2005), a colonização do intestino humano por *E. coli* ocorre dentro de algumas horas até poucos dias após o nascimento, a partir de amostras adquiridas da mãe durante a passagem pelo canal do parto ou a partir do meio ambiente.
Estudos moleculares de RNA ribossomal têm sugerido que *E. coli* e *Salmonella* divergiram de um ancestral comum entre 120 e 160 milhões de anos atrás, o que coincide com a origem dos mamíferos (OCHMAN & WILSON 1987; LAWRENCE, 1999). Atualmente, *E. coli* pertence à família Enterobacteriaceae, faz parte dos grupos coliformes totais e a 45°C, é considerada a espécie mais frequente do gênero Escherichia (ao qual pertencem as demais espécies *E. albertii, E. blattae, E. fergusonii, E. hemanni e E. vulneris*) e a única de importância para Saúde Pública por compreender um grande número de patotipos e tipos sorológicos diferentes, com características de virulência distintas, tornando-a extremamente versátil em sua patogenicidade (NATARO & KAPER, 1998; MENG et al., 2001; GERMANO & GERMANO, 2003; TRABULSI et al., 2005; CARDOSO 2009; SILVA et al., 2010). Fenotipicamente, *E. coli* é distinguida de outros coliformes a 45°C (*Klebsiella* spp., *Enterobacter* spp. e *Citrobacter* spp.) pelas características de crescimento no Agar L-EMB (Levine Eosina de Metileno) e pelo perfil bioquímico nos testes de indol, vermelho metila, Voges Proskauer e citrato (SILVA et al., 2010).

E. coli não patogênica, como visto, habita de modo inofensivo a luz intestinal, exceção ocorre nos hospedeiros debilitados ou imunossuprimidos, ou quando as barreiras gastrointestinais são violadas. Nessas condições, mesmo *E. coli* “não patogênica” pode causar infecção. Clinicamente, *E. coli* patogênica pode causar diarreias brandas ou graves e outras patologias extra-intestinais graves, tais como quadros de meningite, pneumonia, septicemia e síndrome hemolítica urêmica (seguida de falência renal), entre outras (NATARO & KAPER, 1998).
A presença ou não dos fatores de virulência classificam *E. coli* em amostras comensais, que habitam o intestino dos seres humanos e animais desde o nascimento até a morte (não causando doença); amostras patogênicas intestinais ou diarreoiogênicas, causadoras de diferentes quadros diarreia e amostras patogênicas extra-intestinais (ExPEC), que são isoladas de diversos sítios anatômicos (OKURA, 2010), ocasionando mais comumente quadros de infecção urinária, infecção sistêmica (septicemia) e doença neonatal, principalmente meningite (FARAH, 2011).

De acordo com MENG *et al.* (2001) e MELO (2006), os genes de virulência estão localizados em plasmídios, bacteriófagos ou no cromossomo bacteriano e tem sido demonstrada a possibilidade de transferência horizontal entre distintas linhagens de *E. coli*. O genoma bacteriano de *E. coli* possui regiões conservadas, denominadas núcleo, e regiões flexíveis. A existência de elementos móveis (regiões flexíveis) tais como os transpósons, bacteriófagos e plasmídeos são em grande parte responsáveis pela transferência dos atributos de virulência entre as *E. coli*. Devido a esta plasticidade genética o genoma de *E. coli* pode diferir em um milhão de pares de bases entre variantes comensais e patogênicas (CROXEN *et al*., 2013).

3.1.1 *Escherichia coli* comensal

E. coli comensal faz parte da microbiota reconhecidamente inofensiva para os seres humanos, sendo isolada comumente das fezes de indivíduos saudáveis. *E. coli* K-12, um sorotipo da espécie, por exemplo, é considerada um estirpe não virulenta e comum no intestino dos seres humanos e animais (MELO, 2006).

Evolutivamente, *E. coli* comensal difere de *E. coli* patogênicas por não apresentar em seu genoma genes que codificam os diversos fatores de virulência conhecidos (FRANZOLIN, *et al*., 2005). Sabe-se, entretanto, que *E. coli* comensal pode adquirir atributos específicos de virulência e se tornar patogênica via elementos móveis.
(KAPER et al., 2004; MELO, 2006). KUHNERT et al. (2000), por sua vez, afirmam que somente em raras condições, *E. coli* comensal pode se tornar uma ameaça a indivíduos saudáveis.

3.1.2 *Escherichia coli* em alimentos

A pesquisa de *E. coli* em alimentos data de 1892, quando passou a ser utilizada como indicador sanitário de contaminação da água por material fecal. Por ser um micro-organismo quase sempre proveniente de material fecal, sua identificação em alimentos ou em água passou a sugerir um potencial risco para a presença de outros patógenos entéricos tais como *Salmonella* (SILVA et al., 2010). Além disso, a contaminação de alimentos por *E. coli* é um indicativo de tratamento térmicos inadequados, de sanitização deficiente nos ambientes de produção ou de contaminação posterior ao processamento (KORNACKI & JOHNSON, 2001; SOUSA, 2006).

SILVA (2002) relata que, dentre as bactérias do grupo coliformes a 45°C, *E. coli* é mais compreendida e a mais facilmente diferenciada de outros membros. Estes têm uma associação duvidosa com a contaminação fecal. *E. coli*, embora também possa ser introduzida nos alimentos a partir de fontes não fecais, é o melhor indicador de contaminação de origem fecal conhecido até o momento. Segundo a autora, a contaminação dos alimentos (principalmente crus) por *E. coli* tem forte associação com contaminação fecal direta ou indireta. Direta, porque pode ocorrer durante o processamento inadequado das matérias primas e por falta de higiene dos manipuladores; e indireta, pela veiculação por meio de águas poluídas e esgoto.

CASAROTI et al. (2007) corroboram os relatos acima ao afirmarem que a pesquisa de *E. coli* fornece informações seguras sobre as condições higiênicas dos alimentos e sobre uma eventual presença de enteropatógenos. Isso porque *E. coli* existe exclusivamente no trato gastrointestinal dos seres humanos e animais, sendo, portanto, utilizada como um dos principais micro-organismos na indicação de contaminação fecal.

Dessa forma, por ser considerada como um importante indicador sanitário dos alimentos e ser a espécie predominante na população de coliformes a 45°C, a ANVISA, por meio da Resolução RDC nº12, de 02 de janeiro de 2001, preconiza a
análise microbiológica do grupo coliformes a 45°C em praticamente todos os alimentos destinados ao consumo humano expostos à venda no comércio (OKURA, 2010).

Além do seu papel como indicador sanitário, é importante considerar que diversas estirpes de *E. coli* são também patogênicas para humanos e animais, estando envolvidas em surtos de DTA. O reconhecimento de *E. coli* como patógeno de origem alimentar ocorreu somente em 1971, quando queijos comercializados em 14 Estados norte-americanos provocaram aproximadamente 400 casos de gastroenterite devido a contaminação por uma linhagem enteroinvasiva. Entretanto, antes de 1971, já haviam sido reportados cinco surtos por *E. coli* envolvendo alimentos. O primeiro em 1947 na Inglaterra, pelo patótipo EIEC; o segundo em 1961 na Romênia, por EPEC e os outros três no Japão, entre 1963 e 1967, dois deles por EIEC e o outro por fonte não conhecida. Como patógeno humano, entretanto, há evidências que sugerem *E. coli* como causadora de diarreia infantil desde de 1700 (JAY, 2005).

3.1.3 *Escherichia coli* diarrreogênica

As diarreias causadas por *E. coli* apresentam distribuição mundial. Entretanto, devido a elevada subnotificação dos casos, sua real extensão e prevalência ainda são desconhecidos (GERMANO & GERMANO, 2003). SOUZA (2006) afirma, por sua vez, que vários tipos antigênicos de *E. coli* têm sido implicados com doença diarréica em todo o mundo, com mais de dois milhões de mortes ocorrendo a cada ano, representando, portanto, um grave problema de Saúde Pública.

Segundo MENG *et al.* (2001) e FENG *et al.* (2011) *E. coli* diarrreogênica é classificada em seis patotipos diferentes, segundo seus fatores de virulência, manifestações clínicas, epidemiologia e sorotipagem. Estes patotipos são: *E. coli* Enteropatogênia (EPEC), *E. coli* Enterotoxigénica (ETEC), *E. coli* produtora de toxina de Shiga (STEC) *E. coli* Enteroinvasiva (EIEC), *E. coli* Enteroagregativa (EAEC), e *E. coli* Difusamente Aderente (DAEC).

A versatilidade e a virulência dos patotipos de *E. coli* diarrreogênica, normalmente, são conferidas pelos seguintes elementos genéticos: plasmídios, ilhas de patogenicidade cromossomal e DNA de bacteriófagos. A patogenicidade de *E. coli* está relacionada ao impacto cumulativo de um ou vários fatores de virulência, os quais
diferenciam as patogênicas de não patogênicas. Todas as categorias de *E. coli* diarreogênica possuem pelo menos uma propriedade de virulência relacionada aos plasmídios (MELO 2006). EIEC, STEC, EAEC e EPEC, por exemplo, abrigam famílias de plasmídios que codificam múltiplos fatores de virulência. EPEC e STEC por sua vez, expressam a virulência por meio de genes cromossômicos, localizados em ilhas de patogenicidade (NATARO & KAPER, 1998). ORDEÑEZ & TABULSI, (2005) afirmam que os principais atributos de virulência das STEC são codificados por bacteriófagos.

De maneira geral, os mecanismos de virulência de *E. coli* podem ser definidos como: fatores capazes de modificar a superfície da célula hospedeira, de fixar-se a mesma, de produzir toxinas e enterotoxinas, bem como sistemas de secreção que exportam proteínas, além de outros (KUHNERT, *et al.* 2000). MELO (2006) resume esses fatores como “fatores de colonização”, que favorecem a íntima ligação da bactéria aos enterócitos, impedindo a remoção da mesma pelo peristaltismo e como fatores que estimulam a liberação de toxinas/enterotoxinas que interferem com os processos fisiológicos normais da célula hospedeira.

3.1.3.1 *Escherichia coli* Enteropatogênica (EPEC)

A primeira categoria de *E. coli* diarreogênica identificada foi EPEC. Os primeiros estudos envolvendo esta categoria foram publicados em 1920, e finalmente confirmados em 1945 na Inglaterra (TRABULSI & ORDEÑEZ, 2005).

EPEC é considerada uma importante causa de diarreia infantil, especialmente em recém-nascidos e lactentes, devido à falta de resposta imune adquirida. A ausência do aleitamento materno, o baixo peso ao nascer, a desnutrição nos primeiros meses de vida e as condições precárias de habitação são considerados fatores de risco (SILVA & SILVA, 2005).

De acordo com Centro de Vigilância Epidemiológica de São Paulo - CVE-SP (2002), surtos de EPEC têm incidência variável em todo mundo, despontando em locais com condições sanitárias precárias. No Brasil, EPEC foi isolada em 40% das crianças com diarreia aguda e associada com 7% de mortalidade (SOUZA, 2006). SILVA & SILVA (2005) estimam que, no Brasil, as diarreias causem mais de 200.000 óbitos anuais em crianças e que a diarreia por EPEC encontra-se entre as principais causas.
EPEC causa uma diarreia líquida com muco, febre e desidratação. Os sintomas variam entre um breve período até vários dias. Casos crônicos já foram relatados. O principal mecanismo de transmissão é o fecal-oral a partir de mãos, alimentos ou fórmulas infantis contaminadas (MENG et al., 2001; SOUZA, 2006). A dose infectante em crianças é presumivelmente baixa; já para os adultos, é geralmente similar a outros enteropatógenos, em que \(10^6\) UFC são necessários para causar infecção (CVE-SP, 2002; FENG et al., 2011).

Segundo NATARO & KAPER (1998), o mecanismo de patogenicidade das EPEC envolve os estágios de adesão localizada, transdução de sinal e aderência íntima. A sequência temporal destes estágios não é definida, na verdade, os diferentes estágios podem ocorrer concomitantemente. A adesão localizada, envolve interação íntima entre as bactérias e superfície da célula hospedeira. Nas amostras de EPEC típica, esta aderência é mediada por uma fímbria do tipo IV denominada BFP (“bundle-forming pilus”). O conjunto de 13 genes responsáveis pela codificação de BFP são carreados por um plasmídio de 60 MDa, denominado EAF (“EPEC adherence factor”). A transdução de sinais, envolve um aparato de secreção do tipo III, que induz a secreção de proteínas de EPEC, chamadas Esps (“E. coli secreted proteins”; EspA, EspB, EspD, EspF, EspG, Map e Tir). EspA, B e D são componentes do aparato de secreção. As funções de poucas destas proteínas são conhecidas em detalhes. De uma forma geral, elas desencadeiam a transdução de sinais em cascata nas células hospedeiras levando a um rearranjo dos componentes do citoesqueleto. Os genes responsáveis pela codificação destas proteínas estão inseridos na região LEE (locus of enterocyte effacement). Por fim a aderência íntima, envolve a atividade do gene cromossômico eae, que expressa a proteína intimina, responsável pelo contato íntimo entre a bactéria e a célula epitelial. O acúmulo de filamentos de actina e outras proteínas do citoesqueleto como actina, talina, miosina e ezerina, formam estruturas semelhantes a pedestais, que resultam na perda das microvilosidades.

TRABULSI & ORDOÑEZ (2005) reconhecem a existência de duas categorias de EPEC denominadas EPEC típica e atípica, as quais apresentam características comuns de não produção da toxina de Shiga (stx) e capacidade de causar lesões histopatológicas no intestino denominadas lesão A/E (attaching and effacing). A diferença, por sua vez, está associada à presença do plasmídio EAF (EPEC Adherence...
Factor), que transporta o gene bfpA, responsável pela síntese da fimbria BFP (bundle forming pilus) nas EPEC típicas. As fimbrias BFP são responsáveis pela adesão inicial de EPEC à mucosa intestinal e também por ligações de uma bactéria a outra, formando microcolônias, que caracterizam o padrão de adesão localizada (AL). EPEC atípica, assim como EPEC típica, também apresenta adesão localizada, porém, uma adesão frouxa. No Brasil, e especialmente em São Paulo, EPEC típicas representaram a principal causa de diarreias até meados dos anos 90.

Fenotipicamente, as amostras de EPEC são identificadas por meio das lesões A/E, da aderência localizada (AL) em tecidos celulares Hep2 ou HeLa, pela pesquisa da fimbria BFP e por testes sorológicos utilizando-se de antissoros O e H (TRABULSI & ORDOÑEZ, 2005). FRANCO (2010) e FENG et al. (2011) acrescentam às pesquisas acima, os testes moleculares, que identificam a presença do gene eae (que codifica a produção da íntimina) e a ausência de produção da toxina de Shiga (essa última característica diferencia as amostras EPEC das STEC).

3.1.3.2 *Escherichia coli* Enterotoxigênica (ETEC)

ETEC, identificada no final da década de 1960, é conhecida como causa frequente de diarreia em crianças e adultos nos países menos desenvolvidos e em visitantes de países industrializados às áreas subdesenvolvidas. Os sintomas predominantes deste patógeno associam-se a uma diarreia líquida, desidratação, dor abdominal, vômito, febre baixa, náusea e mal-estar (CVE-SP, 2002). Em adultos estima-se que seja necessária uma dose infectante de 10^6 a 10^8 UFC para ocasionar quadros de diarreia (JAY, 2005).

NATARO & KAPER (1998) relatam que 20 a 40% das “diarreias dos viajantes” são ocasionadas por amostras de ETEC e estas ocorrem com maior frequência nos meses mais quentes e na primeira vez que o indivíduo viaja para áreas com saneamento básico precário. ORDEÑEZ (2005) cita uma prevalência de 20% de ETEC nos casos de diarreia em crianças com menos de cinco anos de idade em países em desenvolvimento.

Segundo MENG *et al.* (2001), o mecanismo de ação das ETEC baseia-se em uma adesão na mucosa intestinal via fatores de colonização, seguido da produção
de uma ou ambas as enterotoxinas termolábil (LT) e termoestável (ST), que agem sob as células da mucosa intestinal provocando os quadros de diarreia. De acordo com JAY, (2005) e ORDENEZ (2005) as toxinas LT e STa (uma variante da toxina ST) agem sobre a célula intestinal aumentando os níveis intracelulares de adenosina monofosfato cíclico (cAMP) e guanosina monofosfato cíclico (cGMP), respectivamente, o que resulta em um aumento na secreção de Cl⁻ e menor absorção de Na⁺ pelas células das microvilosidades.

As toxinas LT dividem-se nas classes LT-I e LT-II. A toxina LT-I, ou simplesmente LT, é codificada por genes plasmidiais denominados elt ou etx, apresenta cerca de 80% de similaridade com a toxina colérica, subdivide-se em LTh e LTp, as quais podem ser detectadas a partir de ETEC isoladas de humanos e suínos, respectivamente. Já a LT-II, de codificação fágica, é encontrada apenas em estirpes de animais e, raramente, em estirpes de seres humanos (NATARO & KAPER, 1998).

As toxinas ST, por sua vez, dividem-se em STa e STb, as quais são codificadas pelos genes estA e estB. Ambas divergem quanto ao padrão de solubilidade em água, em solventes orgânicos e resistência a degradação proteica. STa possui duas variantes, conhecidas como STp (codificada pelo gene estA) e STh (codificada pelo gene st1), nomeadas com base na observação inicial das mesmas em amostras bacterianas que infectavam suínos e seres humanos, respectivamente. Posteriormente, STp também foi observada em amostras de origem bovina. STb, por sua vez, foi primeiramente associada às amostras de ETEC isoladas de suínos e, em seguida, identificada em amostras de ETEC originadas de humanos. Os genes que codificam as toxinas STa e STb estão localizados, principalmente, em plasmídios (MELO, 2006; SJÖLING, 2007; BARBOSA, 2010; PAULA, 2012).

A enterotoxina LT pode ser inativada por temperaturas de 60°C durante 30 minutos. A enterotoxina ST, por sua vez, mantém atividade tóxica após incubação a 100°C durante 30 minutos. A toxina LT pode ser neutralizada por antitoxinas contra a toxina da cólera, uma vez que ambas são imunologicamente relacionadas (ORDENEZ et al., 2005).

Outro mecanismo de patogenicidade de ETEC inclui os fatores de colonização (CFA), também denominados adesinas. Estas desencadeiam importante papel na gênese da diarreia por assegurarem alta especificidade de ligação a mucosa intestinal, possibilitando assim a expressão das toxinas LT e ST nas proximidades do
epitélio. Vários fatores de colonização, todos de origem plasmidial, (atualmente, 25 CFAs antigenicamente distintos), já foram caracterizados e são subdivididos segundo características genéticas. Os CFAs têm sido identificados em cerca de 30 a 50% das amostras de ETEC isoladas de casos de diarreia (NATARO & KAPER 1998; ORDEÑEÑEZ, 2005; PAULA, 2012).

3.1.3.3 Escherichia coli produtora de Toxina Shiga (STEC)

A associação de STEC com infecção intestinal foi demonstrada pela primeira vez em 1983, por epidemiologistas norte-americanos durante a investigação de um surto de diarreia provocado pelo consumo de hambúrgueres mal cozidos em uma rede de restaurante fast food nos EUA (ORDOÑEZ & TRABULSI, 2005; MITTELSTAEDT & CARVALHO, 2006). STEC, diferentemente das demais E. coli diarreigênicas, apresentam baixa dose infectante (aproximadamente 10^2 células) e período de incubação de um a três dias. Além disso, alguns sorotipos são responsáveis por três síndromes características: colite hemorrágica, síndrome urêmica hemolítica e púrpura trombótica trombocitopênica (FOSYTHE, 2002).

Segundo SILVA et al. (2010), na classe STEC há cerca de 200 sorotipos diferentes, sendo a principal característica destes a habilidade de produzir as toxinas Shiga, também conhecidas como verotoxinas (devido ao seu efeito citotóxico sobre as células Vero, uma linhagem de células do rim do macaco verde africano Cercopithecus aethiops). NGUYEN & SPERANDIO (2012), por sua vez, relatam a existência de aproximadamente 380 diferentes sorotipos de STEC, sendo que, apenas um pequeno número destes estão confinadamente associados a doença humana.

Dentro da classe de STEC, encontra-se subgrupo Escherichia coli Enterohemorrágica (EHEC). Este subgrupo está reservado às amostras que produzem as toxinas Shiga, que aderem intimamente às células do epitélio intestinal, provocando lesões A/E e que possuem o plasmídeo pO157, associado à produção de enterohemolisinas e outros potenciais fatores de virulência. Além disso, as infecções por EHEC são graves, apresentam potencial epidêmico e se manifestam clinicamente por colite hemorrágica, síndrome hemolítica urêmica (SHU) e púrpura trombocitopenia trombótica (PPT). Dessa forma, EHEC denota uma conotação clínica não extensiva a todas STEC. De acordo com essa definição todos os sorotipos de EHEC são patogênicos,

Caldorin et al. (2013) avaliaram a ocorrência de STEC no Brasil envolvendo diferentes fontes de isolamento (animais, alimentos e humanos). Segundo os autores a positividade de STEC variou de 1,4 a 71% em amostras clínicas no rebanho de bovinos; de 0 a 18,1% em fontes alimentares; e de 0,6 a 6,3% em amostras clínicas humanas. Os estudos apontaram predominância de STEC não O157:H7 em amostras clínicas no rebanho bovino e ovino, nos alimentos e amostras clínicas humanas, mostrando a importância da pesquisa das STEC não O157:H7. Segundo Souza (2006), nos EUA, Japão e Inglaterra, o sorotipo O157:H7 é o mais comum. No Brasil, o sorogrupo O111 é considerado o mais frequente entre as amostras de STEC isoladas de humanos desde 1989 (Caldorin et al. 2013). De acordo com Meng et al. (2001) e Feng et al. (2011), embora existam muitos sorotipos de STEC, sabe-se que o O157:H7 destaca-se como um dos principais patógenos do grupo. Esse sorotipo foi isolado em território brasileiro a partir de fontes animais (bovinos), em alimentos (carne moída em São Paulo no ano de 2011) e em humanos (a partir de fezes de diarreicas de um paciente portador de HIV em São Paulo, em 1990, e de outros dois, com grave diarreia sanguinolenta, no mesmo Estado, em 2000) (Caldorin et al., 2013).

Considerando que o principal reservatório de STEC, principalmente o sorotipo O157:H7, é o trato gastrointestinal de bovinos, as infecções por este agente passam a ocorrer, principalmente, pelo consumo de carne mal cozida, hambúrgueres e leite cru, podendo, entretanto, estar associado ao consumo de vegetais e à ingestão de água (Meng, et al. 2001; Forsyth, 2002; Mittelstaedt & Carvalho 2006; Feng et al. 2011).

Diferentemente dos humanos, em que a colonização das STEC ocorre no cólon, nos bovinos a interação se dá na junção reto-anal, onde a mesma não exerce efeito patogênico. Acredita-se que a ausência de receptores Gb3 e a colonização em sítios diferentes sejam os responsáveis pela tolerância dos ruminantes as STEC, em especial ao sorotipo O157:H7. Os seres humanos, por sua vez, apresentam grande quantidade de receptores Gb3 no endotélio vascular, principalmente no rim, o que contribuiu para o
desenvolvimento do quadro de falência renal aguda nos mesmos (NEGYEN & SPERANDIO, 2012).

As toxinas Shiga são o principal fator de virulência de STEC. Atualmente, estão descritas duas toxinas (stx1 e stx2), sendo que a stx1 compreende três subtipos (stx1a, stx1c, stx1d) e a stx2 sete subtipos (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f e stx2g) (COURA, et al. 2014). Além dos subtipos clássicos de stx2, existem variantes como stx2c, stx2vha, stx2vhb, stx2vhc, stx2Ox3b, stx2O111, stx2O48, stx2O118, stx2o292, stx2Ox392, stx2e e stx2ev (PIGATTO, 2008). Sabe-se que a toxina stx2 é 100 vezes mais tóxica para os seres humanos do que a toxina stx1 e que diversos sorotipos de STEC podem produzir uma ou ambas as toxinas. Os genes que codificam as toxinas stx1 são carreados por bacteriófagos e aqueles responsáveis por stx2 podem ser encontrados tanto em bacteriófagos como no cromossomo bacteriano (NATARO & KAPER, 1998; PATON & PATON, 1998; ORDEÑEZ & TABULSI, 2005; MITTELSTADT & CARVALHO, 2006).

Além das toxinas Shiga, algumas amostras de STEC são capazes de provocar lesões A/E no intestino, semelhantemente à EPEC devido à presença dos genes cromossomais eae e tir, responsáveis pela produção das proteínas intimina e receptor tir, respectivamente. Soma-se à lesão A/E a ação de uma enterohemolisina e outras proteínas plasmidiais, codificadas pelo plasmídio pO157. Acredita-se que o ferro liberado a partir da lise das hemácias por essas enzimas favoreça o crescimento destes micro-organismos (NATARO & KAPPER, 1998; ORDEÑEZ & TABULSI, 2005; MITTELSTADT CARVALHO, 2006).

O mecanismo de ação de STEC baseia-se na adesão ao enterócito, via proteína intimina/Tir e, em seguida, proliferação e produção de suas toxinas. Desta interação resultam as lesões A/E, assim como ocorre com EPEC. As toxinas produzidas são absorvidas pela mucosa, entram na circulação, são internalizadas pelas células endoteliais (principalmente os pequenos vasos) e interrompem a síntese proteica, ocasionando a morte celular. A lesão das células endoteliais do colón resulta em perda de sangue nas fezes e a do endotélio glomerular em obstrução e insuficiência renal (ORDENEZ & TABULSI, 2005).
3.1.3.4 *Escherichia coli* Enteroinvasiva (EIEC)

EIEC é um importante patógeno causador de diarreia em adultos. Este grupo de bactérias atua nas células do cólon humano, onde desencadeia uma forte reação inflamatória, seguida de ulcerações, provocando lesões semelhantes às encontradas na shiguelose (NATARO & KAPER, 1998). Clinicamente, os indivíduos afetados desenvolvem uma diarreia aquosa, seguida de disenteria, muco e sangue, dores abdominais e febre. Estudos mostram que a dose infectante é baixa (10 UFC), o período de incubação de 8 a 44 horas e curso da doença de vários dias (FOSYTHE, 2002; MARTINEZ, 2005; BARBOSA, 2010).

Segundo MENG (2001), EIEC são bioquímica, genética e patologicamente relacionadas à *Shigella* spp., mas não produzem a toxina Shiga. Acredita-se que estas bactérias tenham compartilhado um ancestral comum. As características bioquímicas que marcam o patotipo de EIEC são a perda da capacidade de descarboxilar a lisina, de fermentar a lactose e a não motilidade, o que a diferencia de outras *E. coli* diarreogênicas (NATARO & KAPER 1998, CROXEN et al. 2013).

Atualmente, o modelo de patogenicidade das estirpes de EIEC envolve: (I) penetração celular, (II) lise do vacúulo fagocitico, (III) multiplicação intracelular, (IV) movimentação direcional no citoplasma e (IV) difusão para células epiteliais adjacentes, seguido de intensa resposta inflamatória. Atributos de virulência têm sido atribuídos à genes contidos no plasmídeo pInv, responsáveis pela codificação das proteínas de invasão Ipa (A, B, C e D), Ics, IpgC (NATARO & KAPER, 1998). Além das proteínas de invasão, diversas outras enterotoxinas, tal como a enterotoxina termolábil ShET2, codificada por genes cromossomais, são consideradas relevante fator de virulência para este patotipo (MARTINEZ, 2005).

3.1.3.5 *Escherichia coli* Enteroaagregativa (EAEC)

ELIAS JUNIOR & GOMES (2005) relatam que, em Fortaleza, EAEC foi associada a 68% das diarreias infantis persistentes.

EAEC engloba uma categoria de *E. coli* diarreigênica cuja característica principal é a capacidade de apresentar um padrão de adesão nas linhagens de células HEp-2 e HeLa, denominada adesão agregativa (AA). No padrão AA, as bactérias aderem-se umas às outras, à superfície das células, bem como à superfície da lamínula numa configuração que lembra “tijolos empilhados” formando agregados heterogêneos ou em forma de cordões (FORSYTHE, 2002; ELIAS JUNIOR & GOMES, 2005; SOUZA, 2006). O padrão AA permite diferenciar amostras de EAEC das amostras de DAEC e EPEC, as quais apresentam aderência difusamente e localizada, respectivamente (ELIAS JUNIOR & GOMES, 2005).

A patogênese da EAEC envolve uma adesão na mucosa intestinal (mediada por adesinas fimbriais e não fimbriais, que permeiam a aderência das bactérias entre si, no muco intestinal e entre os enterócitos), seguida de multiplicação na camada de muco, formando um biofilme local característico e posterior produção de toxinas que lesam a mucosa do intestino, resultando em uma inadequada absorção de fluidos e solutos, desencadeando o quadro de diarreia (ELIAS JUNIOR & GOMES 2005). Vários fatores de virulência já foram descritos para EAEC. Entre os mais relatados, citam-se a toxina termoestável EAST-1, que apresenta atividade similar à enterotoxina ST de ETEC; a toxina Pet, que induz efeitos citotóxicos sobre a membrana e o citoesqueleto dos enterócitos e as estruturas fimbriais denominadas *agregative adherence factors* (AAF) I, II, III, às quais estão associadas ao padrão AA. Ambas as toxinas e adesinas fimbriais são codificadas por genes plasmidiais, tal como o gene *aatA* do plasmídeo pAA (NATARO & KAPER, 1998).

De acordo com JAY (2005), não está claro se os membros deste grupo são patógenos de origem alimentar. ELIAS JUNIOR & GOMES (2005), ao contrário, relatam que EAEC já foi isolada de conteúdo lácteo de mamadeiras, demonstrando, portanto, sua possível veiculação por meio de alimentos.
3.1.3.6 *Escherichia coli* Difusamente Aderente (DAEC)

A denominação “*E. coli* Difusamente Aderente” foi inicialmente utilizada para se referir a amostras de *E. coli* que aderem de maneira difusa a células HEp-2 e HeLa, e que não formam microcolônias como EPEC. Com a descoberta de EAEC, DAEC foi reconhecida como uma categoria independente e potencialmente diarrêiogênica. A aderência difusamente das DAEC é mediada por fimbrias, codificadas por um gene denominado *AIDA-I*, encontrado no DNA cromossomal e no DNA plasmidial (NATARO & KAPER, 1998). A utilização de outros marcadores genéticos, os genes *Afa/Dr*, tem sido empregada em diagnósticos recentes como marcador para amostras DAEC. A família *Afa/Dr* inclui as adesinas afimbriais Afa-I, II, III, V, VII e VIII, Nfa-I, as fimbrias Dr-I e II, AAF-I, II, III e a fimbria F148, que são encontradas em 75% das amostras de DAEC (ALMEIDA, 2013).

3.1.3.7 Outros patotipos de *Escherichia coli* diarrêiogênica

Percebe-se pela literatura que, continuamente, emergem *E. coli* que compartilham fatores de virulência até então descritos somente em patotipos específicos. Em 2011, por exemplo, foi descoberto o sorotipo O104:H4. Este tornou-se conhecido por conter fatores de virulências típicos de EAEC e STEC e por protagonizar um grande surto na Alemanha, sendo também posteriormente identificado em outros 16 países europeus e nos EUA. Na ocasião, o surto acometeu 3.816 pessoas (dos quais 2.971 foram confirmados laboratorialmente) e vitimou 40 pessoas. Dado epidemiológico interessante deste estudo demonstrou que das 845 pessoas acometidas por SHU, 88% eram adultos, diferentemente dos casos provocados pelo sorotipo O157:H7, em que os idosos e crianças são os indivíduos mais suscetíveis (FRANK et al., 2011).

Percebe-se com esta revisão, e de acordo com o resumo da tabela 1, que inúmeros são os aspectos epidemiológicos, patogênicos, clínicos, terapêuticos e de diagnósticos relacionados as *E. coli* diarrêiogênica, colocando-as desta forma como patógeno de grande relevância no cenário mundial.
QUADRO 1: Aspectos epidemiológicos, patogênicos, clínicos, terapêuticos e de diagnósticos molecular relacionados às *E. coli* diarreogênica

<table>
<thead>
<tr>
<th>Patotipos</th>
<th>Hospedeiro</th>
<th>Sítio de colonização</th>
<th>Doenças</th>
<th>Reservatórios/origem da contaminação</th>
<th>Tratamento</th>
<th>Mecanismo adesão</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>tEPEC</td>
<td>Crianças menores de 5 anos, em adultos (alto inóculo)</td>
<td>Intestino delgado</td>
<td>Diarreia aquosa profusa</td>
<td>Humanos</td>
<td>Reidratação oral, antimicrobianos para casos persistentes</td>
<td>Attaching and effacing</td>
<td>eae *, bfpA *, stx</td>
</tr>
<tr>
<td>aEPEC</td>
<td>Adultos e crianças</td>
<td>Cólon e íleo</td>
<td>Diarreia aquosa, Colite hemorrágica, SHU</td>
<td>animais, alimentos e água</td>
<td>Hidratação, suporte para SHU</td>
<td>Attaching and effacing *</td>
<td>eae *, stx *</td>
</tr>
<tr>
<td>STEC</td>
<td>Adultos e crianças</td>
<td>Cólon e íleo</td>
<td>Diarreia aquosa, Colite hemorrágica, SHU</td>
<td>animais, alimentos e água</td>
<td>Hidratação, suporte para SHU</td>
<td>Attaching and effacing *</td>
<td>eae +, stx +</td>
</tr>
<tr>
<td>EIEC/Shigella</td>
<td>Crianças menores de 5 anos, adultos, viajantes, pessoas imunossuprimidas</td>
<td>Cólon</td>
<td>Shiguelose, disenteria bacilar, potencial para SHU</td>
<td>Humanos, animais, alimentos e água</td>
<td>Reidratação oral, antimicrobianos</td>
<td>Não se aplica (invasiva)</td>
<td>ipaH *, ial *, stx * (S. dysenteriae)</td>
</tr>
<tr>
<td>EAEC</td>
<td>Adultos</td>
<td>Intestino delgado</td>
<td>Diarreia persistente</td>
<td>Alimentos, ocasionalmente adultos portadores</td>
<td>Reidratação oral, antimicrobianos</td>
<td>Tijolos empilhados e/ou invasão</td>
<td>aatA *, aaiC *</td>
</tr>
<tr>
<td></td>
<td>Crianças</td>
<td>Intestino delgado e/ou cólon</td>
<td>Diarreia persistente, SHU (stx +)</td>
<td></td>
<td>Reidratação oral, antimicrobianos e probióticos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETEC</td>
<td>Pessoas imunocomprometidas, crianças menores de 5 anos e viajantes</td>
<td>Intestino delgado</td>
<td>Diarreia persistente, diarreia aquosa</td>
<td>Humanos, animais, alimentos e água</td>
<td>Reidratação, antimicrobianos, fluoroquinolonas</td>
<td>Mediada por Fatores de colonização (CF)</td>
<td>CFs, LT, ST</td>
</tr>
<tr>
<td>DAEC</td>
<td>Crianças (maior severidade entre 18 meses e 5 anos) adultos</td>
<td>Intestino (localização não caracterizada)</td>
<td>Diarreia aquosa persistente em crianças, especula-se contribuir para Doença de Crohn’s em adultos</td>
<td>Desconhecido</td>
<td>Reidratação</td>
<td>Aderência difusa e/ou invasão</td>
<td>Nenhum marcador comum</td>
</tr>
</tbody>
</table>

Fonte: CROXEN *et al.* (2013)

*Somente para STEC LEE positivo, não para STEC LEE negativa; CFs – Fatores de colonização; tEPEC – *E. coli* enteropatogênica típica; aEPEC - *E. coli* enteropatogênica; STEC - *E. coli* produtora de shiga toxina; EIEC - *E. coli* enteriovasora; ETEC – *E. coli* enterotoxigênica ; DAEC – *E. coli* difusamente aderente; LT – enterotoxinas termolábil; ST enterotoxina termostável; SHU – Síndrome Hemolítica Urêmica*
3.2 Sorotipos de *Escherichia coli*

Antes da identificação dos fatores de virulência, a sorotipagem era a técnica predominante para identificação de *E. coli* diarreogênica. Em 1944, Kauffman propôs um esquema para a classification sorológica de *E. coli*, a qual é utilizada ainda hoje, mas de forma modificada (NATARO & KAPER, 1998).

Atualmente, a classification sorológica de *E. coli* é baseada nas diferenças antigênicas encontradas na parede celular (antígenos O), no envelope celular ou cápsula (antígenos K) e nos flagelos (antígenos H). Uma combinação específica dos antígenos O e H definem o “sorotipo” de uma amostra (MENG et al., 2001). Os sorotipos são designados primeiro pelos antígenos somáticos, seguido dos capsulares e flagelares, como, por exemplo, o sorotipo O157:H7, em que a nomeclatura indica está presente o antígeno (sorogrupo) O157, ausente o antígeno capsular e presente o antígeno H7 (SILVA et al., 2010).

De acordo com SILVA et al. (2010), o antígeno somático “O” tem sua base química na diversidade de polissacarídeos da parede celular das bactérias, a qual é composta de peptídeooglicanos na camada interna e por lipopolissacarídeos (LPS) na camada externa. Os fatores antigênicos somáticos são designados por números que vão de 1 a 173, mas os fatores O31, O47, O67, O72, O93, O94 e O122 foram excluídos. Segundo FORSYTHE (2002), as moléculas de LPS subdividem-se em três regiões: lipídeo A, centro e antígeno O, de acordo com as unidades de açúcar. LPS é um dos fatores responsáveis pelos quadros de septicemia, por induzir uma super produção de fatores de necrose tumoral.

Os antígenos “K”, por sua vez, são os polissacarídeos capsulares (CPS), havendo 60 fatores conhecidos, separados em dois grupos distintos segundo o peso molecular dos compostos de CPS. Antígenos flagelares “H” derivam da proteína flagelar (flagelina), a qual carrega os fatores antigênicos designados por números que vão de 1 a 56, sendo que os fatores H13 e H22 foram removidos (SILVA et al., 2010).

Segundo MENG et al. (2001), há uma correlação entre o sorogrupo e a virulência da amostra, entretanto, esta não é definitiva. O sorogrupo O86, por exemplo, associado com determinadas amostras de *E. coli*, raramente causa doença nos seres
humanos. Ao contrário, o sorogrupo O55 é mais comumente associado com quadros patológicos. NATARO & KAPER (1998) relatam que certos sorosgrupos podem estar associados a quadros clínicos de diarreia, mas que, em geral, não é a sorologia que confere virulência à amostra. Com relação ao antígeno H, Wolf (1987) reporta que o papel do flagelo na patogênese das *E. coli* diarreogênica ainda carece de mais estudos.

3.3 Susceptibilidade de *Escherichia coli* aos antimicrobianos e classes terapêuticas

Parece não haver dúvidas de que os antimicrobianos revolucionaram a medicina humana por reduzir de maneira substancial as taxas de mortalidade e morbidade por doenças bacterianas. Entretanto, estudos mostram que o seu uso indevido, geralmente sob a forma abusiva e/ou desnecessária, têm resultado em uma pressão seletiva sobre as bactérias, levando à emergência e disseminação da resistência bacteriana aos antimicrobianos entre diversos micro-organismos (WHO, 2012).

Em se tratando de susceptibilidade de *E. coli* aos antimicrobianos, CROXEN *et al.* (2013) apontam vários estudos que demonstram a disseminação da resistência bacteriana a várias classes terapêuticas entre os diversos patotipos de *E. coli* diarreogênica. Segundo os autores, a resistência de EPEC aos antimicrobianos vem aumentando nos continentes, com casos notificados nos EUA, Reino Unido, Brasil, Irã e Cingapura. Com relação às amostras de EIEC isoladas nas Américas do Norte e do Sul, África e Ásia, entre 1970 e 2000, observou-se que 48% delas eram resistentes a pelo menos um antimicrobiano. Entre 112 amostras de DAEC isoladas em crianças brasileiras, 70% das amostras eram resistentes a múltiplos antimicrobianos, e mais de 50% a ampicilina, cefalotina, estreptomicina, sulfonamidas ou tetraciclina. Ainda com relação a *E. coli* patogênicas, embora não haja recomendação de antibioticoterapia para casos STEC, vários estudos têm comprovado a existência de resistência múltipla aos antimicrobianos entre suas amostras. A resistência à sulfonamida e a tetraciclina, por exemplo, é comum entre o sorotipo O157:H7 e STEC não-O157. Além disso, existe uma significante resistência à ampicilina, à estreptomicina e ao trimetoprim, entre diferentes sorotipo de STEC não-O157.

A presença de *E. coli* β lactamase de espectro estendido (EBSL) em alimentos tem sido reportada como grave problema de Saúde Pública, devido ao risco de infecções com alternativas terapêuticas limitadas e à possibilidade de transferência

Classes terapêuticas abordadas no estudo

β lactâmicos

Os antimicrobianos β lactâmicos inibem a biossíntese do peptídeooglicano na sua fase terminal. Este é formado de cadeias lineares de dissacarídeos, compostas por unidades repetidas de N-acetil-glicosamina (NAG) e ácido N-acetilmurâmico (NAM), ligadas por pontes peptídicas e catalisadas por enzimas específicas (transpeptidases, carboxipeptidases e endopeptidases) denominadas proteínas fixadoras de penicilinas (*penicillins binding proteins* ou PBP) (BAPTISTA, 2013). Compostos **β lactâmicos** se ligam diretamente às PBP, impedindo a formação de ligações cruzadas entre as unidades de NAG e NAM e, portanto, a correta formação da parede celular bacteriana. Cada bactéria possui várias PBP, E. coli, por exemplo, possuem sete PBP (GUIMARÃES et al., 2010).

Fazem parte da classe β lactâmicos, quatro grupos de antimicrobianos: as penicilinas, as cefalosporinas, os monobactâmicos e os carbapenemas, todos possuindo como característica comum um núcleo básico, composto por três átomos de carbono e um de nitrogênio denominados anel β lactâmico ou azetidinona (PELCZAR Jr et al., 1997).

Outros compostos inibidores, como ácido clavulânico, sulbactam e tazobactam, embora possuam o anel β lactâmico bastante estável, não possuem atividade antibacteriana contra as PBP, mas sim a característica de se combinarem fortemente com as enzimas β lactamasas, funcionando como “escudo” quando em associação com as penicilinas. Ao interagirem com as β lactamasas, os inibidores deixam os demais antimicrobianos disponíveis para agirem nas PBP, interferindo, dessa forma, com a síntese do peptídeooglicano (BAPTISTA, 2013).
Aminoglicosídeos

Essa classe atua por meio da fixação ao ribossomo 30S, impedindo o movimento do mesmo ao longo de RNA-m e, consequentemente, interrompendo a síntese proteica devido à leitura errônea do código genético (o que leva à incorporação de diferentes aminoácidos e a formação de proteínas aberrantes) ou devido à interferência no complexo de iniciação. Essas proteínas alteradas, uma vez utilizadas na formação da membrana celular bacteriana, comprometem a semi-permeabilidade da mesma, levando à morte bacteriana. Os mais conhecidos fármacos deste grupo são: amicacina, gentamicina e estreptomicina (MOLINA, et al., 2009; PINSETTA, 2010).

Quinolonas e Fluoroquinolonas

As quinolonas e fluoroquinolonas (ciprofloxacina, norfloxacina e ofloxacina) têm sua ação terapêutica bastante conhecida no tratamento de infecções urinárias. O mecanismo de ação desta classe baseia-se na inibição das enzimas topoisomerase IV em bactérias Gram positivo pelas quinolonas e inibição das topoisomerase II ou DNA girase em bactérias Gram negativo por ação das fluoroquinolonas. Essas enzimas são responsáveis pelo enrolamento e “desenovelamento” do DNA bacteriano durante a sua replicação (GUIMARAES et al., 2010).

Polipeptídeos

Antimicrobianos da classe polipeptídeos, como a bacitracina e as polimixinas, possuem a capacidade de causar lesões na membrana celular. Ambos são produzidos por bactérias do gênero Bacillus. Há cinco tipos diferentes de polimixinas (A, B, C, D e E), sendo que somente a polimixina B e a colistina (polimixina E) possuem uso na prática clínica, estando disponíveis comercialmente. Farmacologicamente, as polimixinas atuam aumentando a permeabilidade da membrana externa após fixarem sua cadeia policatiônica (polipeptídeo) à estrutura aniónica (lipopolissacarídeo) da membrana bacteriana. De maneira geral, as polimixinas interagem com a molécula de lipopolissacarídeo da membrana retirando cálcio e magnésio, necessários para estabilidade da molécula de polissacarídeo. Esse processo é independente da entrada do antimicrobiano na célula bacteriana e resulta em aumento de permeabilidade da
membrana, seguido de rápida perda de conteúdo celular e morte da bactéria (PELCZAR Jr, et al., 1997; MOLINA et al., 2009; KAVITICO, 2010).

Glicilcilinas

As glicilcilinas têm como representantes os fármacos tigeclinica e as tetraciclinas. A tigeciclina é um derivado estrutural das tetraciclinas. As tetraciclinas foram descobertas pela primeira vez em 1945, a partir da produção da clortetraciclina pelo Streptomyces aureofaciens, uma bactéria do solo. Todas as tetraciclinas (clortetraciclina, oxitetraciclina, doxiciclina, miociclina e outras) possuem em comum o tetra anel naftaleno. Os fármacos deste grupo penetram nas bactérias por difusão passiva, por meio de porinas na membrana externa, ou por meio de um processo ativo dependente de energia que os bombeia para o interior da célula bacteriana. Em seguida, fixam à subunidade 30S do ribossomo bacteriano impedindo a ligação do RNA-t no sítio A do ribossomo e a adição de aminoácidos e, consequentemente, a síntese proteica (TRABULSI & ALTHERTUM, 2005; MAIA, 2010).
4. MATERIAL E MÉTODOS

4.1 Obtenção das amostras

No período de janeiro de 2014 a julho de 2015, foram coletados 396 diferentes tipos de alimentos em vários municípios no Estado de Minas Gerais, todos inspecionados por meio do Serviço de Inspeção Municipal, Estadual ou Federal, sendo 228 por meio do PROGVISA-MG e 168 a partir de investigação de surtos de DTA.

Os alimentos provenientes do PROGVISA-MG foram coletados por fiscais das Vigilâncias Sanitárias Municipais (que compõe cada uma das 28 Superintendências Regionais de Minas Gerais - FIGURA 1) no comércio local para fins de fiscalização da qualidade. As amostras foram, em seguida, acondicionadas em condições de refrigeração adequadas a cada tipo de alimento e transportadas até o LACEN-MG, para realização de diversas análises bromatológicas. No que se refere às análises microbiológicas, as mesmas foram realizadas consoante aos padrões microbiológicos vigentes, estabelecidos pela Resolução nº 12, de 09 de janeiro de 2001, da ANVISA.

Os alimentos obtidos a partir dos surtos de DTA também foram coletados pela equipe de investigação de surtos das Vigilâncias Sanitária e Epidemiológica Municipais, a partir de diversos ambientes (residências, eventos festivos, estabelecimentos comerciais de alimentação, escolas, creches, hospitais, postos de saúde e outros) e, da mesma forma, acondicionados segundo a natureza do alimento e transportados até o LACEN-MG para análises bromatológicas. O direcionamento analítico microbiológico para esses alimentos, por sua vez, baseou-se em informações constantes nas Fichas de Investigação de Surtos de DTA, emitidas por cada Vigilância local.
FIGURA 1: Mapa de distribuição das 28 Superintendências Regionais de Saúde de no Estado Minas Gerais.
Fonte: Secretaria Estadual de Saúde de Minas Gerais, 2011.
4.2 Análise microbiológica de coliformes

4.2.1 Contagem de coliformes a 45°C nos alimentos

A contagem de coliformes dos 396 alimentos foi realizada segundo a “Técnica de Número Mais Provável por tubos múltiplos”. Pelo menos três diluições da amostra de alimentos foram inoculadas em uma série de três tubos contendo Caldo Lauril Sulfato Triptose (LST)\(^1\). Os tubos LST foram incubados a 35°C, por 24/48 horas, sob aerobiose e analisados quanto à turvação e produção de gás nos tubos de Duran. De cada tubo LST positivo, foi transferida uma alíquota para tubos contendo 5 mL de Caldo \textit{E. coli} (EC)\(^2\). Estes foram incubados a 45°C, em banho-maria, por 24/48 horas e, em seguida, também analisados quanto à turvação e produção de gás nos tubos de duran, segundo \textit{American Public Health Association - APHA} (KORNACKI & JOHNSON, 2001).

4.2.2 Isolamento das amostras de \textit{E. coli}

A partir de cada tubo de caldo EC positivo, foi estriada uma alçada em Ágar Eosina Azul de Metileno (EMB)\(^3\), o qual foi incubado sob aerobiose, a 35°C, por 24 horas. Das placas que apresentaram crescimento de colônias típicas (colônias nucleadas com centro preto, com ou sem brilho verde metálico) foram selecionadas, sempre que possível, cinco colônias de cada morfotipo. Estas foram repicadas em Ágar Sangue\(^4\) e incubadas sob aerobiose, a 35°C, por 24 horas, para obtenção de cultura pura. A seguir, foram realizadas as seguintes provas bioquímicas: citrato (Ágar Citrato \(^5\)), indol (Caldo Triptona 1% \(^6\)), Vermelho de Metila e teste de Voges Proskauer (Caldo VM-VP\(^7\)) para confirmação da espécie, segundo APHA (KORNACKI & JOHNSON, 2001). Para confirmação adicional da identificação de cada amostra isolada, utilizou-se o sistema semi automatizado VITEK II (bioMérieux) e cartões de identificação tipo GN\(^8\). Após confirmação da identificação, as amostras de \textit{E. coli} foram criopreservadas a - 80°C em \textit{Brain Heart Infusion} (BHI)\(^9\) com 20% de glicerol, até a realização das análises de susceptibilidade antimicrobiana, pesquisa dos patotipos diarreogênicos e sorotipagem.

4.3 Análise dos perfis de susceptibilidade aos antimicrobianos e determinação do índice de Multipla Resistência Antimicrobina (MAR)

O perfil de susceptibilidade aos antimicrobianos das amostras de *E. coli* isoladas foi avaliado por meio do sistema semi-automatizado VITEK II (bioMérieux). As amostras de *E. coli*, criopreservadas a - 80°C, foram cultivadas em Ágar Sangue e incubadas sob aerobiose, a 35°C ± 2°C, por 24 horas. Após esse período, suspensões do micro-organismo, utilizando o calibrador DensiCHEK™ Plus VITEK II, foram produzidas de forma que o inóculo apresentasse densidade equivalente ao padrão de 0,50 a 0,63 da escala McFarland.

Para a determinação do perfil de susceptibilidade antimicrobiana no foi utilizado o “Cartão para Determinação de Sensibilidade de Micro-organismos Gram-Negativos (AST-N239”). O teste de sensibilidade no sistema VITEK II é baseado na técnica da Concentração Mínima Inibitória (CMI). Cada cartão AST-N239 apresenta 64 micropoços, sendo um poço controle, que contém apenas meio de cultura microbiológico, e os demais com quantidades conhecidas de um antimicrobiano específico combinado com um meio de cultura (quadro 2). No fim do ciclo de incubação, os valores de CMI são determinados para cada antimicrobiano contido no cartão e cada amostra é classificada como sensível, intermediariamente resistente ou resistente.

Para avaliação do perfil de múltipla resistência antimicrobiana, foi calculado o índice MAR (*Multiple Antibiotic Resitence*). Este é obtido pela divisão do número de antimicrobianos ao qual determinada amostra foi resistente pelo número de antimicrobianos *tEstados, conforme proposto por KRUMPERMAN (1983). Segundo o autor, amostras de *E. coli* que apresentarem índice MAR superior a 0,2 devem ser consideradas multirresistentes.
QUADRO 2 – Conteúdo dos poços do cartão AST-N239 VITEK II Compact (bioMérieux)

<table>
<thead>
<tr>
<th>Antimicrobiano - Código</th>
<th>Concentração (µg/mL)</th>
<th>Intervalo de CMI (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥</td>
<td>≤</td>
</tr>
<tr>
<td>Amicacina - AN</td>
<td>8,16, 64</td>
<td>2</td>
</tr>
<tr>
<td>Ampicilina - AM</td>
<td>4, 8, 32</td>
<td>2</td>
</tr>
<tr>
<td>Ampicilina/Subbactam - SAM</td>
<td>4/2, 16/8, 32/16</td>
<td>2/1</td>
</tr>
<tr>
<td>Cefepima - FEP</td>
<td>2, 8, 16, 32</td>
<td>1</td>
</tr>
<tr>
<td>Cefoxitina - FOX</td>
<td>8, 16, 32</td>
<td>4</td>
</tr>
<tr>
<td>Ceftazidima - CAZ</td>
<td>1, 2, 8, 32</td>
<td>1</td>
</tr>
<tr>
<td>Ceftriaxona - CRO</td>
<td>1, 2, 8, 32</td>
<td>1</td>
</tr>
<tr>
<td>Cefuroxima - CXM</td>
<td>2, 8, 32</td>
<td>1</td>
</tr>
<tr>
<td>Ciprofloxacina - CIP</td>
<td>0.5, 2, 4</td>
<td>0.25</td>
</tr>
<tr>
<td>Colistina - CS</td>
<td>4, 16, 32</td>
<td>0.5</td>
</tr>
<tr>
<td>Ertapenem - ETP</td>
<td>0.5, 1, 16</td>
<td>0.5</td>
</tr>
<tr>
<td>Gentamicina - GM</td>
<td>4,16,32</td>
<td>1</td>
</tr>
<tr>
<td>Imipenem - IPM</td>
<td>1, 2, 6,12</td>
<td>0.25</td>
</tr>
<tr>
<td>Meropenem - MEM</td>
<td>0.5, 2, 6, 12</td>
<td>0.25</td>
</tr>
<tr>
<td>Piperacilina/Tazobactam - TZP</td>
<td>2/4, 8/4,24/4, 32/4,32/8, 48/8</td>
<td>4/4</td>
</tr>
<tr>
<td>Tigeciclina - TGC</td>
<td>0.75, 2, 4</td>
<td>0.5</td>
</tr>
<tr>
<td>ESBL - ESB</td>
<td>FEP 1, CTX 0.5, CAZ 0.5, FEP/CA 1/10, CTX/CA 0.5/4, CAZ/CA 0.5/4</td>
<td>Negativo</td>
</tr>
</tbody>
</table>

- CMI: Concentração Mínima Inibitória
- ESBL: β lactamase de espectro estendido
- Para ESBL, FEP é cefepima, CTX é cefotaxima, CAZ é ceftazidima e CA é ácido clauvulânico. Para ESBL positiva o resultado de teste deve ser interpretado como resistência a todas as penicilinas, cefalosporinas e ao aztreonam

Fonte: Catálogo REF 413204 – bioMérieux

4.4 Análise genética

4.4.1 Extração do DNA

DNA foi extraído pelo método proposto por Fox et al. (1994) com algumas modificações. As amostras de E. coli foram cultivadas em Ágar Sangue, a 35 ºC, por 24 h e suspendidas em 210 µL de tampão STET (sacarose\(^{10}\) 8%, Tris-HCl\(^{11}\) 50 mM, EDTA\(^{12}\) 50 mM, Triton X-100\(^{13}\) 0,1%; pH 8,0). A seguir, foram adicionados 60 µL de
SDS¹⁴ (10%) e 10 μL de RNase A¹⁵ (0,5 mg/mL). O material foi homogeneizado e, após 1 h de incubação a 37 ºC, foram acrescentados 30 μL de proteinase K¹⁶ (10 mg/mL). A suspensão foi homogeneizada e incubada em banho-maria, a 37 ºC, overnight. Então, foram adicionados 75 μL de NaCl¹⁷ 5 M e 60 μL de solução CTAB/NaCl (CTAB¹⁸ 5% p/v/NaCl 0,7 M) e a suspensão foi gentilmente agitada e incubada por 10 min, a 56 ºC, em banho-maria. DNA foi extraído empregando-se 700 μL de mistura de fenol¹⁹ e clorofórmio²⁰ (1:1) por cerca de três vezes e apenas clorofórmio na última etapa da extração e precipitado a -20 ºC, overnight, com 60 μL de acetato de sódio²¹ 3 M e 750 μL de etanol absoluto²². A seguir, o material foi centrifugado a 12000 g, a 4 ºC, por 75 min e, após evaporação do etanol residual, foram acrescentados 750 μL etanol 70%. Após centrifugação a 12000 g, a 4 ºC, por 25 min, o sedimento de DNA foi diluído em água Milli-Q® estéril. A amostra foi homogeneizada, a concentração de DNA foi medida em espectrofotômetro (Nanodrop 1000; Thermo Fischer Scientific, Wilmington, DE, EUA), empregando-se comprimento de onda de 260 nm, e a relação DNA/proteína foi estimada utilizando-se, também, a leitura realizada em 280 nm.

4.4.2 Pesquisa dos genes de virulência pela reação em cadeia da polimerase (PCR)

O DNA extraído foi submetido à PCR convencional (Termociclador Mastercycler nexus) utilizando iniciadores específicos para pesquisa dos seguintes marcadores de virulência: eae, bfpA, eltB, estA, st1, stx1, stx2, ipaH e aatA. Os produtos de amplificação, sequência de primers e protocolos estão descritos no quadro 3. O volume final das reações de amplificação foi de 20 μL e o mix, constituído por tampão (Tris HCl²³ 10 mM, pH 8,4), 1,5 mM de MgCl₂²⁴, 200 μM de cada dNTP²⁵, 0,5 μM de cada primer²⁶, 1 U de Taq DNA polimerase²⁷ e 20 ng de DNA molde. Os controles positivos foram eae, bfpA (E. coli CDC O126, INCQS 000184), elt, estA e st1 (E. coli H10407), stx1 e stx2 (E. coli CDC EDL-933, INCQS 00171), ipaH (E. coli 3927, Instituto Adolfo Lutz) e aatA (E. coli 3929 L08-15, Instituto Adolfo Lutz). Em cada lote de reações foram empregadas amostra de E. coli ATCC 25922 e água, como controle negativo interno e controle negativo, respectivamente.

Eletroforese em gel de agarose

Para visualização dos produtos amplificados, 4µL de cada amostra foram adicionados a 3µL de corante Gel Red. Em seguida, 6 µL desta mistura foram aplicados em gel de agarose a 1,5%. A corrida eletroforética foi realizada a 80 v por 90 minutos e o gel, posteriormente, analisado em um transiluminador de luz ultravioleta. O gel foi fotografado e a massa molecular dos amplicons foi estimada por comparação com o marcador de massa molecular 100 bp.

Sorotipagem de *E. coli*

As amostras de *E. coli* confirmadas como positivas para qualquer dos fatores de virulência anteriormente descritos foram gentilmente sorotipadas pelo Núcleo de Doenças Entéricas do Instituto Adolfo Lutz, São Paulo, Brasil. Os sorotipos O:H foram determinados por meio do método de aglutinação em tubo (EWING, 1986), empregando-se antissoros adsorvidos para os antígenos somáticos O1 a O186 e flagelares H1 a H56, preparados pelo Instituto Adolfo Lutz. No caso do antígeno somático a amostra foi considerada como pertencente a determinado sorogrupo ao apresentar título de aglutinação igual ou superior a título de aglutinação de amostra de referência, empregada na produção do antissoro para o referido grupo.

QUADRO 3: Reações de amplificação empregadas para pesquisa de *Escherichia coli* diarreogênica: alvo, patopatogênico, fatores de virulência, *primers*, programas e *amplicons*.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Patótipo/ Produto</th>
<th>Sequência do primer</th>
<th>Primer (µM)</th>
<th>MgCl₂ (mM)</th>
<th>Taq polimerase (U)</th>
<th>Programa</th>
<th>Amplicon (pb)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>eae</td>
<td>STEC E EPEC/ Intimina</td>
<td>F: 5´-CTGAACGGCCATTACCAGCCAGA-3´
R: 5´-CCAGAACGATACGATACCGTGTA-3´</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>95°C/40s 40x; 53°C/2min 40x; 60°C/2min 40x</td>
<td>917</td>
<td>Aranda, et al., 2004</td>
</tr>
<tr>
<td>bfpA</td>
<td>EPEC atípica/ Fimbría BFP</td>
<td>F: 5´-ATTGGTGCTTGCGCTTGTCG-3´
R: 5´-GCCGCTTTATCAACCTGGTA-3´</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>95°C/40s 40x; 53°C/2min 40x; 60°C/2min 40x</td>
<td>532</td>
<td>Gunzburg, et al., 1995</td>
</tr>
<tr>
<td>eltB</td>
<td>ETEC/ Enterotoxina termolábil</td>
<td>F: 5´-ACGCGGTACTATCCTCTC-3´
R: 5´-TGTTCTCGTGTCGATATCGT-3´</td>
<td>2,0</td>
<td>2,0</td>
<td>1,0</td>
<td>94°C/1min 1x; 94°C/30s 35x; 52°C/30s 35x; 72°C/1min 35x; 72°C/5min 1x</td>
<td>166</td>
<td>Sjöling et al., 2007</td>
</tr>
<tr>
<td>estA</td>
<td>ETEC/ Enterotoxina termoestável (STp)</td>
<td>F: 5´-CTTTTTCTTTTTAGTCA-3´
R: 5´-ACGAGGAGATTACAACAAAG-3´</td>
<td>0,5</td>
<td>2,0</td>
<td>1,0</td>
<td>94°C/1min 1x; 94°C/30s 35x; 52°C/30s 35x; 72°C/1min 35x; 72°C/5min 1x</td>
<td>120</td>
<td>Rodas et al., 2009</td>
</tr>
<tr>
<td>stl</td>
<td>STEC/ Enterotoxina termoestável (STh)</td>
<td>F: 5´-TTACACCTTCTCAGAGT-3´
R: 5´-CTATTCATGCTTTCCAGGACCA-3´</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>94°C/1min 1x; 94°C/30s 35x; 52°C/30s 35x; 72°C/1min 35x; 72°C/5min 1x</td>
<td>348</td>
<td>Vidal et al., 2004</td>
</tr>
<tr>
<td>stx1</td>
<td>STEC/ Toxina shiga 1</td>
<td>F: 5´-CAGTGAATGTGGGAGGGGAGG-3´
R: 5´-CAACAGACAAATCTAGCTTG-3´</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>95°C/20s 30x; 61°C/40s 30x; 72°C/1,5min 30x</td>
<td>584</td>
<td>Vidal et al., 2004</td>
</tr>
<tr>
<td>stx2</td>
<td>STEC/ Toxina shiga 2</td>
<td>F: 5´-ATCCATTTCCCGGGAGTTTACG-3´
R: 5´-GGCTATCGTGATACACAGGAGC-3´</td>
<td>0,5</td>
<td>1,5</td>
<td>1,0</td>
<td>95°C/20s 30x; 61°C/40s 30x; 72°C/1,5min 30x</td>
<td>933</td>
<td>Vidal et al., 2005</td>
</tr>
<tr>
<td>ipaH</td>
<td>EIEC/ Proteína de invasão</td>
<td>F: 5´-CCCGCACGTTTTAATAGCTGG-3´
R: 5´-GTGGAGAGCTGAATTCCTGTCG-3´</td>
<td>0,5</td>
<td>0,75</td>
<td>1,0</td>
<td>95°C/2min 1x; 94°C/30s 35x; 55°C/1min 35x; 72°C/1min 35x; 72°C/3min 1x</td>
<td>630</td>
<td>Aranda et al., 2004</td>
</tr>
<tr>
<td>aatA</td>
<td>EAEC/ Proteína de membrana</td>
<td>F: 5´-CTGGCAAAAGACTGTATCAT-3´
R: 5´-CAATGTATAGAATCCCGTGTT-3´</td>
<td>0,5</td>
<td>0,75</td>
<td>1,0</td>
<td>95°C/2min 1x; 94°C/40s 30x; 53°C/1min 30x; 72°C/1min 30x; 72°C/7min 1x</td>
<td></td>
<td>Aranda et al., 2004</td>
</tr>
</tbody>
</table>

Fonte: elaborado pelo autor
5. RESULTADOS E DISCUSSÃO

5.1 Dos alimentos analisados e dos resultados microbiológicos

O quantitativo de alimentos analisados por categoria e origem, bem como o resultado da contaminação microbiana por coliformes a 45ºC, podem ser verificados na tabela 1. Ressalta-se que, além da determinação de coliformes a 45ºC, pela técnica de Número Mais Provável, os alimentos foram também submetidos a análise de outros parâmetros microbiológicos, porém, não abordados neste trabalho, uma vez que não fazem parte do escopo. Entretanto, para conhecimento os resultados referentes a tais padrões poderão ser consultados nos Anexos A, B e C.

TABELA 1: Quantitativo de alimentos coletados pelo PROGVISA-MG e nos surtos de DTA ocorridos em Minas Gerais, no período de janeiro de 2014 a julho de 2015, e analisados quanto ao parâmetro de coliformes a 45ºC.

<table>
<thead>
<tr>
<th>Categoría de Alimentos</th>
<th>PROGVISA</th>
<th>Surtos de DTA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alimentos analisados</td>
<td>Alimentos contaminados</td>
</tr>
<tr>
<td>Massas e salgados 1</td>
<td>51</td>
<td>5 (9,8%)</td>
</tr>
<tr>
<td>Carne e derivados 2</td>
<td>4</td>
<td>1 (25,0%)</td>
</tr>
<tr>
<td>Especiarias 3</td>
<td>55</td>
<td>5 (9,1%)</td>
</tr>
<tr>
<td>Gelados comestíveis 4</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Hortaliças 5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Produtos lácteos 6</td>
<td>102</td>
<td>11 (10,7%)</td>
</tr>
<tr>
<td>Produtos panificação 7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pratos mistos 8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>228</td>
<td>22 (9,6%)</td>
</tr>
</tbody>
</table>

Na análise dos dados do PROGVISA-MG, observou-se que, dos 228 alimentos coletados pelo programa, 22 (9,6%) apresentaram coliformes a 45ºC. Destes, 11 (50%) apresentaram valores de coliformes a 45ºC acima do permitido pela legislação vigente (RDC, nº 12 de 2001, da ANVISA). Os outros 11, embora também tenham
apresentado resultado positivo para coliformes a 45°C, não foram reprovados, pois os resultados não ultrapassaram os valores preconizados na legislação. Dados dos Programas de Monitoramento anteriores confirmam que a presença de bactérias do grupo coliformes a 45°C é, de fato, o principal parâmetro microbiológico de reprovação que vem sendo identificado nos últimos anos.

Segundo OLIVEIRA (2013), no PROGVISA-MG de 2011, foram analisados 396 alimentos. Destes, 2,8% foram reprovados no parâmetro de coliformes a 45°C. Em 2012, o percentual de reprovação foi de 3,3% frente aos 333 alimentos analisados. Em ambos os anos o grupo coliformes a 45°C destacou-se como principal parâmetro microbiológico de reprovação dos alimentos, quando comparado aos demais micro-organismos alvo (*Bacillus cereus*, clostrídeo sufito redutor, estafilococos coagulase positiva, *Listeria monocytogenes, Salmonella*, etc), preconizados pela legislação RDC, nº 12 de 2001, da ANVISA.

Uma análise detalhada sobre os alimentos que apresentaram algum grau de contaminação por coliformes a 45°C mostrou que os “Produtos lácteos” (composto por nove amostras de queijos Minas, uma de queijo Prato e uma de leite pasteurizado tipo C) representaram 50% dos 22 alimentos contaminados no PROGVISA (tabela 1). Resultados similares foram relatados por PINTO (2009), ao analisar 987 alimentos (distribuídos entre 22 categorias) de programas anteriores e ao evidenciar que leite e derivados representaram a principal categoria de alimentos insatisfatórios. Nesta ocasião, 39% das amostras de queijo Minas frescal e ricota analisadas foram reprovadas no parâmetro coliformes a 45°C.

Nas categorias “Massas e salgados” e “Especiarias”, que vêm sendo continuamente analisadas pelos Programas de Monitoramento do Estado, o pão de queijo e a pimenta do reino representam os principais alimentos comumente reprovados, assim como percebido no presente trabalho. Em 2004, 2007 e 2008, o índice de pães de queijo reprovados nos padrões microbiológicos foi 38,6%, seguido de 18,0% e 13,0%, respectivamente. Entre os anos de 2000 e 2001, 68,0% das especiarias analisadas encontravam-se em desacordo com os padrões microbiológicos, em 2005, esse percentual foi 17% e em 2012 de 10,5% (PINTO, 2009).
TABELA 2: Descrição dos alimentos coletados pelo PROGVISA-MG entre janeiro/2014 e julho/2015, no Estado de Minas Gerais, cujo quantitativo de coliformes a 45ºC pela técnica do Número Mais Provável foi superior ao limite do método (3 NMP/g ou mL).

<table>
<thead>
<tr>
<th>Alimentos coletados no PROGVISA</th>
<th>Coliformes a 45ºC (NMP/g ou mL)</th>
<th>PRESENÇA/AUSÊNCIA DE Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pão de queijo 1</td>
<td>4,3 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Pão de queijo 1</td>
<td>2,4 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Pão de queijo 1</td>
<td>* 4,6 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Pão de queijo 1</td>
<td>* 1,1 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Pizza 1</td>
<td>2,3 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Linguíça frescal 2</td>
<td>1,6 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Pimenta do reino 3</td>
<td>4,3 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Pimenta do reino 3</td>
<td>4,6 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Pimenta do reino 3</td>
<td>* 2,4 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Pimenta do reino 3</td>
<td>* 2,4 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Pimenta do reino 3</td>
<td>* 4,6 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Leite pasteurizado 6</td>
<td>* 7,5 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>4,3 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>9,3 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>1,6 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>2,9 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>* 1,1 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>* 1,1 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo Minas frescal 6</td>
<td>* 9,3 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo prato 6</td>
<td>* 4,6 x 10⁷</td>
<td>Presença</td>
</tr>
<tr>
<td>Queijo tipo muçarela 6</td>
<td>4,3 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Queijo prato 6</td>
<td>* 1,5 x 10³</td>
<td>Presença</td>
</tr>
</tbody>
</table>

* Valores acima da legislação vigente (RDC 12 de 2001, ANVISA)

PROGVISA – Programa de Monitoramento da Qualidade de Alimentos da Vigilância Sanitária

Com relação aos dados dos surtos de DTA ocorridos em Minas Gerais, no período de janeiro/2014 a julho/2015, foram notificados 82 surtos, que resultaram em 1.512 doentes e 234 hospitalizações. Um total de 168 alimentos foi analisado, 29 (17,3%) foram considerados positivos para coliformes a 45ºC e 22 (13,1%) para *E. coli*.

Em anos anteriores (2010 a 2014), foram notificados 258 surtos em Minas Gerais, que resultaram em 4.662 doentes, 659 hospitalizações e três mortes. Dados analíticos apontaram que dentre os 470 alimentos analisados, a presença de *E. coli* foi
identificada em 75 (16,0%), sendo considerado o segundo micro-organismo mais prevalente, ficando atrás apenas de *Staphylococcus aureus* (18,3%) (FAULA, 2015).

No presente estudo, coliformes a 45°C foram encontrados nos alimentos das seguintes categorias envolvidas nos surtos de DTA: cinco amostras de massas/salgados, cinco de carne e derivados, duas de bolo confeitado e 17 de pratos mistos ou refeições de pronto consumo (saladas, arroz, tutu, farofa, salpicão etc) (tabela 6). Como visto, a principal categoria de alimentos com contaminação de coliformes a 45°C foi associada às preparações mistas, correspondendo a 58,7% de todos os alimentos contaminados por este grupo microbiano.

Dados anteriores no Estado de Minas Gerais (2010 a 2014), demonstraram que a principal categoria de alimentos impróprios para consumo estava associada às refeições de pronto consumo. Estas representaram 35,2% do total de alimentos analisados (FAULA, 2015). No cenário nacional, entre os anos 2000 e 2014, essas refeições representaram 30,6% das amostras envolvidas nos surtos de DTA, seguidas de ovos e produtos a base de ovos (16,4%) (BRASIL, 2014). No Paraná, entre 1978 a 2000, as preparações mistas corresponderam a 42,0% das amostras impróprias ao consumo, destacando-se frente a outros alimentos (AMSON *et al.*, 2006).

Sabe-se que essas refeições de pronto consumo representam maior risco, pois estão sujeitas à intensa manipulação durante sua preparação, por utilizarem diversas matérias primas, bem como devido à sua exposição prolongada em temperaturas inadequadas e às vezes sem a correta proteção e armazenamento (FAULA, 2015).
TABELA 3: Descrição dos alimentos coletados nos surtos de DTA entre janeiro/2014 e julho/2015, no Estado de Minas Gerais, cujo quantitativo de coliformes a 45ºC pela técnica do Número Mais Provável foi superior ao limite do método (3 NMP/g ou mL).

<table>
<thead>
<tr>
<th>Alimentos coletados nos surtos de DTA</th>
<th>Coliformes a 45ºC (NMP/g ou mL)</th>
<th>PRESENÇA/AUSÊNCIA DE Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macarrão</td>
<td>3,6 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Lasanha</td>
<td>1,2 x 10²</td>
<td>Ausência</td>
</tr>
<tr>
<td>Macarrão</td>
<td>2,1 x 10³</td>
<td>Ausência</td>
</tr>
<tr>
<td>Macarrão</td>
<td>1,1 x 10⁵</td>
<td>Presença</td>
</tr>
<tr>
<td>Baquete</td>
<td>1,1 x 10⁵</td>
<td>Presença</td>
</tr>
<tr>
<td>Frango desfiado</td>
<td>9,3 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Frango cozido</td>
<td>6,4 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Carne bovina assada</td>
<td>4,3 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Carne bovina assada</td>
<td>1,1 x 10⁵</td>
<td>Presença</td>
</tr>
<tr>
<td>GALINHADA</td>
<td>1,5 x 10⁶</td>
<td>Presença</td>
</tr>
<tr>
<td>Bolo confeito</td>
<td>2,1 x 10²</td>
<td>Ausência</td>
</tr>
<tr>
<td>Bolo confeitado</td>
<td>2,1 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Arroz com mistura</td>
<td>4,3 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Arroz com mistura</td>
<td>2,9 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Arroz com conserva</td>
<td>4,6 x 10⁵</td>
<td>Presença</td>
</tr>
<tr>
<td>Arroz</td>
<td>2,4 x 10⁶</td>
<td>Presença</td>
</tr>
<tr>
<td>Farofa de carne</td>
<td>6,4 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Farofa de carne suína</td>
<td>2,9 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Farofa</td>
<td>4,6 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Feijão com linguiça</td>
<td>9,3 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Feijão tropeiro</td>
<td>4,6 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Feijão (tutu)</td>
<td>9,3 x 10⁵</td>
<td>Presença</td>
</tr>
<tr>
<td>Refeição completa (arroz, feijão, salda e carne)</td>
<td>7,5 x 10</td>
<td>Presença</td>
</tr>
<tr>
<td>Refeição completa (arroz, feijão, salda e carne)</td>
<td>4,6 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Salada de folhas e verduras</td>
<td>4,3 x 10</td>
<td>Ausência</td>
</tr>
<tr>
<td>Salada de folhas e verduras</td>
<td>2,9 x 10²</td>
<td>Presença</td>
</tr>
<tr>
<td>Salpicão</td>
<td>1,1 x 10³</td>
<td>Presença</td>
</tr>
<tr>
<td>Escondidinho</td>
<td>1,1 x 10⁴</td>
<td>Presença</td>
</tr>
<tr>
<td>Salpicão</td>
<td>4,7 x 10⁷</td>
<td>Presença</td>
</tr>
</tbody>
</table>

1. Massas e Salgados, 2. Carne e Derivados, 8. Pratos mistos
DTA – Doença de Transmissão Alimentar

Dos 396 alimentos coletados pelo PROGVISA e nos Surtos de DTA, em 51 (12,9%) foi observada a presença de bactérias do grupo coliformes a 45ºC e em 41 destes, a presença de *E. coli* (tabela 4). Nos demais alimentos, foram encontradas, predominantemente, *Serratia fonticola* e *Klebsiella oxytoca*.
TABELA 4: Quantitativo de alimentos coletados pelo PROGVISA e nos surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerais, e os respectivos percentuais de contaminação por coliformes a 45°C e *Escherichia coli*

<table>
<thead>
<tr>
<th>Origem dos alimentos</th>
<th>Nº de alimentos analisados</th>
<th>Nº de alimentos contaminados – coliformes a 45°C</th>
<th>Nº de alimentos contaminados – E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGVISA</td>
<td>228</td>
<td>22 (9,6%)</td>
<td>19 (8,3%)</td>
</tr>
<tr>
<td>Surtos de DTA</td>
<td>168</td>
<td>29 (17,3%)</td>
<td>22 (13,1%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>396</td>
<td>51 (12,9%)</td>
<td>41 (10,3%)</td>
</tr>
</tbody>
</table>

PROGVISA – Programa de Monitoramento da Qualidade de Alimentos da Vigilância Sanitária
DTA – Doença de Transmissão Alimentar

Essa diferença entre a presença de coliformes a 45°C e *E. coli*, na Técnica de Número Mais Provável, tem sido alvo de apontamentos e discussão em vários trabalhos. OKURA (2010), ao analisar 111 amostras de queijo Minas frescal (30 produzidos com leite pasteurizado, 50 com leite cru e 31 temperado com especiarias), identificou positividade para coliformes a 45°C, por meio da Técnica de Número Mais Provável, em 94 (84,7%). Já a presença de *E. coli*, foi observada em 56 (50,5%) amostras. SILVA *et al.* (2006), em estudo similar, ao analisarem 135 alimentos, incluindo queijo Minas frescal, linguiça, hortaliças e fubá, relataram a presença de coliformes a 45°C em 42 (31,1%) e amostras de *E. coli* em 25 (18,5%) alimentos. ROMAN-CANIZALEZ (2103), ao analisar 5.162 alimentos reportou a presença de coliformes a 45°C em 692 (13,4%) e de *E. coli* em 409 (7,9%).

Considerando esses resultados, ou seja, a ausência de *E. coli* em parte das amostras positivas para coliformes a 45°C, SILVA *et al.* (2006) sugerem a necessidade de revisão do termo coliforme a 45°C, visto que a legislação brasileira o considera como equivalente a coliforme fecal e termotolerante. Segundo o autor, a presença de coliformes a 45°C não indica, necessariamente, a contaminação fecal recente, já que outras espécies do grupo, como por exemplo *Citrobacter, Enterobacter e Kebsiella*, podem ter origem fecal, mas também são comumente encontrados no ambiente (água, solo e vegetais) e detectadas na prova de coliformes a 45°C.

Pensando nisto, alguns laboratórios têm optado pela enumeração de bactérias da família Enterobacteriacea (do qual fazem parte os gêneros *Escherichia, Salmonella, Shigella, Enterobacter, Kebsiella, Serratia, Proteus, Providencia,*...
Citrobacter e outros), ao invés de coliformes a 45°C e E. coli. Esta opção baseia-se no fato de que resultado da enumeração de enterobactérias poderia indicar não apenas uma possível contaminação fecal, mas também uma associação com processos infecciosos, demonstrando, assim, uma considerável deficiência higiênica sanitária durante e após o preparo dos alimentos (HOFFMANN et al., 2004).

A presença de outros gêneros da família Enterobacteriaceae, que não Escherichia, por exemplo, foi reportada por OKURA (2010) ao avaliar diferentes tipos de queijos. Em sua avaliação, a partir de 30 queijo Minas frescal produzidos com leite pasteurizado, foram isoladas 279 amostras bacterianas. Destas, 216 (77,5%) foram identificadas como E. coli, 35 (12,5%) Proteus, 12 (4,3%) Providencia e 16 (5,7%) Enterobacter. A análise concomitante de 50 amostras de queijo produzidas com leite cru resultou na seleção de 670 amostras, das quais 578 (86,4%) eram E. coli, 40 (5,9%) Proteus, 36 (3,8%) Providencia, 21 (3,2%) Enterobacter, 3 (0,4%) Klebsiella e 2 (0,29%) Serratia. Por fim, a partir de 31 amostras de queijo temperado com especiarias foram selecionadas um total de 970 amostras, sendo 449 (48,8%) E. coli, 381 (41,4%) Proteus, 77 (8,4%) Providencia e 13 (1,4%) Enterobacter. Como visto, foi evidenciada a existência de seis gêneros da família Enterobacteriaceae (Escherichia, Proteus, Providencia, Enterobacter, Serratia e Klebsiella), dentre as amostras positivas para coliformes a 45°C.

CASAROTI et al. (2007), diferentemente dos autores anteriores anteriormente mencionados, afirmam que os coliformes são os bioindicadores mais frequentemente utilizados para verificar as condições higiênico-sanitárias dos alimentos e que sua presença em alimentos é considerada uma evidência das práticas inadequadas de higiene durante o processamento dos mesmos.

SOUZA et al. (2006) também ressaltam a utilização dos coliformes na definição de padrões para caracterização e avaliação da qualidade de águas e alimentos. Segundo esses autores, a avaliação da presença de coliformes totais em água e alimentos, em alguns casos, pode até não ser indicativa de contaminação fecal, já que estão incluídas neste grupo bactérias não entéricas, consideradas ambientais. Todavia, essa desvantagem não seria apresentada pelos coliformes a 45°C, devido à sua baixa capacidade de colonização ambiental, sendo sua presença em alimentos de grande importância sanitária, uma vez que indicariam a possibilidade de contaminação fecal.
Ao considerarmos o moderado percentual de alimentos contaminados por coliformes a 45°C em nosso estudo, torna-se extremamente relevante avaliar a presença dos mesmos nos alimentos, pois, além de indicarem a condição higiênico sanitária dos alimentos, também podem causar doença aos seres humanos devido à possível presença de *E. coli* diarreigênica.

5.2 Da análise do perfil de susceptibilidade antimicrobiana de *Escherichia coli*

Dos 41 alimentos em que foi identificada presença de *E. coli*, foram isoladas 220 amostras para os estudos de susceptibilidade antimicrobiana. Destas, 160 (72,7%) foram susceptíveis a todos os antimicrobianos tEstados. Das 60 amostras (27,3%) restantes, observou-se que 42 (19,1%) apresentaram resistência a pelos menos um dos fármacos.

A presença de pelo menos uma amostra de *E. coli* resistente e/ou com perfil de resistência intermediária foi identificada entre 70,7% (n=29) dos alimentos (tabela 8). Na categoria de carne e derivados, por exemplo, todos os alimentos positivos para *E. coli* apresentaram pelo menos uma amostra resistente e/ou com perfil de resistência intermediária aos antimicrobianos tEstados. Acredita-se que o elevado percentual de micro-organismos resistentes entre produtos de origem animal, esteja associada à utilização exacerbada de antimicrobianos na pecuária.

Segundo GUARDABASSI *et al.* (2008), KORB *et al.* (2011) e ARIAS & CARRILHO (2012), 50% dos antimicrobianos utilizados no mundo são destinados à agricultura (tratamento animal, externímio de pragas e promotores de crescimento). BOECKEL *et al.* (2015), utilizando modelos estatísticos bayesianos, que combinam mapas de densidades de rebanhos, projeções econômicas de demanda por carne e derivados e estimativas atuais do consumo de antimicrobianos em países de alta renda, estimaram o consumo de antimicrobianos na pecuária para o período de 2010 a 2030. De acordo com os autores, o aumento do consumo global de antimicrobianos será de 67% e, para países como Brasil, Rússia, Índia, China e África do Sul, o aumento será de 99%, cerca de sete vezes mais do que o crescimento populacional humano projetado para esse grupo de países.

Este alto percentual de alimentos apresentando micro-organismos resistentes é motivo de preocupação para os profissionais de saúde, sociedade e
organizações públicas e privadas, uma vez que a resistência bacteriana aos antimicrobianos pode ultrapassar as fronteiras filogenéticas ou ecológicas, ou seja, é possível haver transferência de amostras multirresistentes entre seres humanos e animais, por meio de alimentos e água, possibilitando a disseminação da resistência entre espécies de habitat distintos (QUIN et al., 2002). Segundo SILVA (2009), a presença de patógenos resistentes aos antimicrobianos em alimentos de origem animal é alarmante, devido ao risco de infecções com alternativas terapêuticas limitadas e à possibilidade de transferência horizontal dos marcadores de resistência à microbiota residente.

TABELA 5: Quantitativo de alimentos coletados pelo PROGVISA-MG e nos surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerais, e que apresentaram pelo menos uma amostra de *Escherichia coli* resistente e/ou com perfil de resistência intermediária a antimicrobianos.

<table>
<thead>
<tr>
<th>Categorias de Alimentos</th>
<th>Nº alimentos analisados / Nº de alimentos com presença de E. coli</th>
<th>Nº de alimentos com pelo menos uma amostra de E. coli resistente e/ou resistência intermediária</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massas e salgados</td>
<td>63 / 7</td>
<td>6</td>
</tr>
<tr>
<td>Carnes e derivados</td>
<td>48 / 4</td>
<td>4</td>
</tr>
<tr>
<td>Espécias</td>
<td>55 / 4</td>
<td>2</td>
</tr>
<tr>
<td>Gelados comestíveis</td>
<td>11 / 0</td>
<td>0</td>
</tr>
<tr>
<td>Hortaliças</td>
<td>08 / 0</td>
<td>0</td>
</tr>
<tr>
<td>Lácteos</td>
<td>107 / 11</td>
<td>5</td>
</tr>
<tr>
<td>Produtos panificadora</td>
<td>24 / 1</td>
<td>0</td>
</tr>
<tr>
<td>Pratos mistos</td>
<td>80 / 15</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>396 / 41</td>
<td>29</td>
</tr>
</tbody>
</table>

No presente estudo, o maior percentual de fenótipos resistentes foi identificado para a classe dos fármacos β lactâmicos (Figura 1). Foram observadas 24 (10,9%) amostras resistentes à ampicilina e (10) 4,5% a ampicilina/sublactam. Segundo GUIMARÃES et al. (2010) e SILVA & LINCOPAN (2012) o principal mecanismo de resistência bacteriana contra esta classe de antimicrobianos está associado a produção de enzimas β lactamases. Estas são capazes de promover inativação do fármaco por meio da hidrólise do anel β lactâmico.
Classes Terapêuticas:

A: β lactâmicos; B: aminoglicosídeos; C: fluoroquinolona; D: polipeptídeo e E: glicilciclina

FIGURA 2: Perfil de susceptibilidade antimicrobiana de 220 amostras de *Escherichia coli*, isoladas de alimentos coletados pelo PROGVISA e de surtos de DTA entre janeiro/2014 a julho/2015, no Estado de Minas Gerais, e analisadas frente a 17 antimicrobianos e cinco classes terapêuticas

Uma alternativa para minimizar a ação das enzimas β-lactamases é a conjugação dos fármacos β-lactâmicos com compostos inibidores, tais como ácido clavulânico, sulbactam e tazobactam. Essa conjugação preserva a atividade dos β-lactâmicos, uma vez que os compostos inibidores se ligam fortemente às enzimas β-lactamases, deixando os fármacos livres para agirem nas proteínas fixadoras de penicilinas (*penicillins binding proteins* ou PBP) e, por conseguinte, interferirem com a síntese do peptídeooglicano bacteriano (BAPTISTA, 2013). Em nosso trabalho, observou-se que menos amostras apresentaram resistência ao conjugado ampicilina/sulbactam, quando comparadas à ampicilina isoladamente.
KOga (2014) monitorou a resistência de E. coli aos β-lactâmicos quando avaliou 156 amostras isoladas de carcaças de frango caipira e de granja. Em seu estudo, 20% das amostras isoladas das carcaças de frango caipira mostraram-se resistentes à ampicilina. Com relação às amostras obtidas das carcaças de frango de granja, observou-se uma elevada prevalência de resistência a ampicilina (67,0%), cefazolina (48,8%) e cefotaxima (31,4%). Oltramari et al. (2011) também reportaram alto percentual de resistência aos β lactâmicos cefalotina (55,78%) e ampicilina (26,31%) entre 95 amostras obtidas de leite pasteurizado no Paraná. Na Venezuela, taxa de resistência de 24,4% à ampicilina foi observada entre 45 amostras, isoladas de produtos lácteos (Guillem, 2014).

Diferentemente dos nossos resultados, em que foi observada apenas uma amostra (0,4%) resistente à tigeciclina (classe da glicilciclina), outros trabalhos têm demonstrado alta prevalência de E. coli resistente aos fármacos desta classe, em especial à tetraciclina. Segundo Meilo (2015), das 36 amostras isoladas de diversos tipos de alimentos em Salvador, 25,0% mostraram-se resistentes à tetraciclina. Soares et al. (2007) também relataram uma alta prevalência de resistência às glicilciclinas. Das 40 amostras isoladas de carcaças de frangos e de hortaliças em Fortaleza, a taxa de resistência mais elevada (72,5%) foi observada para doxiciclina. Souza (2007) após analisar 11 amostras de E. coli, isoladas de 80 carcaças de frango no mesmo Estado, reportou elevado percentual (91,1%) de resistência à doxiciclina.

Campos et al. (2006) reportaram resultados semelhantes após analisarem 48 amostras de E. coli isoladas de leite cru e queijos em Goiás. Segundo os autores, em relação às amostras isoladas do leite cru, a maior resistência (18,2%) foi encontrada para tetraciclina. Quanto ao queijo Minas frescal, observou-se igual resistência (4,0%) das amostras de E. coli a tetraciclina, ampicilina e sulfametoxazol/trimetoprim.

Corroboram os dados acima, o estudo realizado com 95 amostras de E. coli, provenientes de queijos comercializados nos Estados de Minas Gerais, São Paulo e Sergipe. Neste trabalho, 20,0% das amostras de E. coli foram resistentes à tetraciclina e 14,7% e 13,6% apresentaram resistência aos β lactâmicos ampicilina e amoxicilina/ácido clavulânico, respectivamente (Ribeiro, 2013). Segundo a autora, estudos realizados
no Brasil, apontam que os principais antimicrobianos utilizados na pecuária leiteira, são os β lactâmicos (38,2%), seguido dos aminoglicosídeos (25,2%) e tetraciclina (15,4%).

De acordo com OKURA (2010), das 90 amostras de E. coli isoladas de queijo com SIF (Serviço de Inspeção Federal), 37,8% mostraram-se resistentes a tetraciclina. Entre as 150 amostras isoladas de queijos sem SIF, o percentual foi de 32,7% e, para as 90 amostras de queijos temperados com especiarias, foi de 58,9%. BARRETO et al. (2012) também reportaram alto percentual (57,9%) de resistência à tetraciclina em amostras de E. coli isoladas de leite cru, comercializados em Cruz das Almas/BA. Na Tailândia, 140 amostras de E. coli provenientes de 186 alimentos pronto para consumo apresentaram alta taxa de resistência à classe das tetraciclinas (43%) (CHOMVARIN et al., 2005).

Assim inúmeros relatos apontam taxas de resistência elevadas aos fármacos das classes β lactâmicos e glicilciclinas, em especial ampicilina e tetraciclina, respectivamente, entre amostras de E. coli, não apenas no Brasil, mas no mundo. Por outro lado, não têm sido reportados na literatura, altos percentuais de E. coli, isoladas de alimentos, resistentes aos antimicrobianos da classe dos aminoglicosídeos. Sabe-se, entretanto, vários mecanismos de resistência a estes antimicrobianos já foram descritos (BRASIL/ANVISA, sem data).

De acordo com BARROS (2012), o principal mecanismo de resistência aos aminoglicosídeos, observado mundialmente, deve-se à inativação dos mesmos após interação com as seguintes enzimas: fosfotransferases, adeniltransferases ou nucleotidiltransferases e acetiltransferases. Segundo o autor, além desse mecanismo, há outros, tais como a captação reduzida do fármaco e alteração ou proteção do alvo ribossômico contra os aminoglicosídeos.

No presente estudo, nenhuma das 220 amostras analisadas demonstraram ser resistentes ou intermediariamente resistentes aos aminoglicosídeos amicacina e gentamicina. Dados semelhantes ao presente estudo também foram relatados por RIBEIRO (2013) ao analisarem 95 amostras de E. coli isoladas de queijo. Segundo autor foi observado baixo percentual de resistência aos aminoglicosídeos (gentamicina 0,0%, amicacina 2,1% e estreptomicina 4,2%). CAMPOS et al. (2006) ao analisarem 58 amostras de leite cru e queijos em Goiás, não evidenciaram nenhuma amostra resistente a gentamicina, e apenas uma (1,8%) com perfil de resistência intermediária a este
fármaco. OLTRAMARI et al. (2011) também não reportaram amostras de *E. coli* resistentes à gentamicina, dentre as 95 amostras obtidas de leite pasteurizado no Paraná.

SOUZA (2007), após analisar 11 amostras de *E. coli* isoladas de carcaças de frango em Fortaleza, não detectou resistência à amicacina e à gentamicina. MANTILLA e FRANCO (2012) relataram que a gentamicina foi o antimicrobiano mais eficiente (84,5%) contra 113 amostras de *E. coli* patogênicas isoladas de carne moída comercializadas em Niterói/RJ. GUIMARÃES et al. (2012) reportaram elevado percentual (97,2%) de susceptibilidade à gentamicina entre 36 amostras de *E. coli* isoladas de queijo coalho em Salvador. Na Venezuela, nenhuma das 45 amostras de *E. coli* isoladas de produtos lácteos demonstraram resistência à gentamicina (GUILLEN, 2014) e, na Tailândia, das 140 amostras de *E. coli* obtidas de diferentes alimentos, apenas 1 (0,7%) mostrou-se resistente a esta droga (CHOMVARIN, 2005). Resultados dessa natureza, assim como os do presente estudo, são importantes instrumentos para tomada de decisão em procedimentos de antibioticoterapia. Todavia, considerando a constante disseminação da resistência bacteriana aos antimicrobianos, é de grande valor e importância a realização de testes de susceptibilidade antimicrobiana, antes do início de qualquer procedimento terapêutico.

Dentre as 220 amostras de *E. coli* analisadas neste trabalho foi evidenciada a presença de uma amostra (04%) ESBL (*β*-lactamase de espectro estendido) positiva. Ressalta-se que presença de um resultado positivo para ESBL no sistema VITEK, deve ser interpretado como resistência a todas as penicilinas, cefalosporinas e ao aztreonam (monobactâmico). Embora as enzimas ESBL estejam amplamente distribuídas na família Enterobacteriaceae, estas são mais comuns entre amostras de *E. coli* e *Klebsiella* spp. A primeira descrição de uma enzima *β*-lactamase ocorreu em *E. coli*. Atualmente, há mais de 430 tipos diferentes de enzimas reportados na literatura (SILVA & LINCOPAN, 2012).

CUNHA (2007), após analisar 29 amostras de *E. coli*, obtidas de 80 hortaliças minimamente processadas em Fortaleza, não identificou nenhuma amostra de *E. coli* ESBL positiva. BRINA et al. (2002) também não relataram a presença de *E. coli* ESBL entre as 124 amostras obtidas de alimentos e animais. SOUZA (2007), por sua vez, após analisar amostras de *E. coli* provenientes de carcaças de frango, reportou moderado percentual (36,4%) de amostras com fenótipo produtor de ESBL. KOGA et al. (2014)
relataram que 32,2% das 121 amostras isoladas de carcaças de frango de granja foram ESBL positivas.

De acordo com DALMARCO et al. (2006), é difícil estimar a ocorrência mundial de amostras produtoras de ESBL, devido às diferenças metodológicas empregadas e interpretação dos resultados. Entretanto, recentes avaliações têm reportado o aumento significativo em todo o mundo, incluindo a América do Norte (E. coli ESBL positiva = 3.3 – 4.7%) e América do Sul (E. coli ESBL positiva = 6.7 – 25.4%). Segundo SILVA & LINCOPAN (2012), uma vez que no Brasil não existem programas de vigilância referentes à resistência bacteriana, torna-se difícil estimar a proporção de amostras bacterianas produtoras de ESBL na Federação. Sabe-se, contudo, que as enzimas dos grupos CTX-M-2, CTX-M-8 e CTX-M-9 são as mais prevalentes.

Além das limitações terapêuticas, do risco de disseminação da resistência bacteriana aos antimicrobianos entre E. coli e outros patógenos e da presença de amostras EBSL positivas, outro fato alarmante deve-se ao aumento contínuo de amostras multirresistentes. Essa multirresistência pode ocorrer entre fármacos da mesma classe ou de classes diferentes. Das 60 amostras de E. coli analisadas (resistentes ou com perfil de resistência intermediária), foi evidenciada a existência de 25 (41,7%) amostras resistentes a mais de dois antimicrobianos, com perfis de resistência individual variando de dois até 12 antimicrobianos, dentre os 17 utilizados (Figura 3).

FIGURA 3: Percentual de amostras de Escherichia coli (n = 60), isoladas de alimentos coletados entre janeiro/2014 a julho/2015 pelo PROGVISA-MG e nos surtos de DTA, resistentes ou com perfil de resistência intermediária a 17 antimicrobianos.

PROGVISA – Programa de Monitoramento da Qualidade de Alimentos da Vigilância Sanitária

DTA – Doença de Transmissão Alimentar
Além da resistência a mais de um antimicrobiano, foram identificadas também oito amostras de *E. coli* (13,3%) resistentes a mais de uma classe terapêutica. Destas, sete amostras foram resistentes a fármacos das classes β lactâmicos e polipeptídeos e uma amostra a antimicrobianos das classes β lactâmicos, polipeptídeos e glicilciclínas (figura 4). A análise do índice MAR (*Multiple Antibiotic Resistance*), mostrou que seis amostras (10,0%) das 60 amostras comprovadamente resistentes e/ou com perfil de resistência intermediária, apresentaram valores superiores a 0,2 (variando de 0,56 a 0,75) sendo, portanto, classificadas como amostras multirresistentes.

FIGURA 4: Percentual de amostras de *Escherichia coli* (*n* = 60), isoladas de alimentos coletados pelo PROGVISA-MG e surtos de DTA, entre janeiro/2014 a julho/2015, em Minas Gerais, resistentes ou com perfil de resistência intermediária frente a cinco classes terapêuticas.

PROGVISA – Programa de Monitoramento da Qualidade de Alimentos da Vigilância Sanitária

DTA – Doença de Transmissão Alimentar

CARDOSO (2012), ao analisar o perfil de susceptibilidade antimicrobiana entre 16 amostras de STEC isoladas de queijo observou que 31,2% eram multirresistentes a diversas classes de antimicrobianos. MELO *et al.* (2015) reportam a multirresistência entre 45,5% das amostras de *E. coli* isoladas de diversos alimentos e CHOMVARIN *et al.* (2005) entre 42,5% das amostras também proveniente de diversos tipos de alimentos. Segundo BARRETO *et al.* (2012), o perfil de multirresistência foi observado entre 57% das amostras provenientes de leite “*in natura*”. OKURA (2010) relatou em que 41,1%, 18,7% e 56,7% das amostras de *E. coli* isoladas de queijo inspecionado pelo Serviço de Inspeção Federal (SIF) mostraram-se resistentes a dois ou mais antimicrobianos, queijo sem inspeção pelo SIF e queijo temperado com especiarias, respectivamente, mostraram-se resistentes a dois ou mais antimicrobianos.
RIBEIRO et al. (2006), após analisarem amostras de E. coli, provenientes de leite in natura, identificaram 20,0% de multirresistência. AVILA (2011), por sua vez, por meio da análise do índice MAR, reporta elevado percentual (100%) de E. coli multirresistentes entre 21 amostras provenientes de linguiça suína frescal. Segundo FREITAS et al. (2004), o surgimento de resistência múltipla aos antimicrobianos, representa risco potencial à saúde pública podendo dificultar o tratamento de doenças humanas e animais, agravando quadros clínicos potencialmente curáveis.

MAGIORAKOS et al. (2012) descreveram a iniciativa do Centro Europeu de Prevenção e Controle de Doenças (ECDC) e do Centro de Prevenção e Controle de Doenças (CDC) norte americano, na padronização de uma terminologia internacional sobre os perfis de resistência adquirida em Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (exceto Salmonella e Shigella), Pseudomonas aeruginosa e Acinetobacter spp. Todas essas bactérias são frequentemente responsáveis por doenças infecciosas em seres humanos e animais e propensas à resistência a múltiplos fármacos. Segundo os autores, foram elaboradas categorias de antimicrobianos de importância terapêutica para cada um dos micro-organismos acima, e paralelamente, definindo a utilização das seguintes terminologias: multirresistentes a drogas (MDR - multidrug resistant), extensivamente resistentes a drogas (XDR – extensively drug resistant) e resistência a todos os agentes antimicrobianos (PDR – pandrug resistant). De acordo com essa classificação MDR foi definido como resistência microbiana a pelo menos um fármaco de três ou mais categorias de antimicrobianos; XDR como resistência a pelo menos um fármaco de todas as categorias ou ausência de resistência em no máximo duas categorias e PDR como resistência a todos os fármacos de todas as drogas antimicrobianas testadas.

No presente trabalho, conforme classificação acima, oito amostras de E. coli (13,3%), dentre as 60 resistentes ou com perfil de resistência intermediária, podem ser classificadas como amostras MDR e uma (1,6%) como possível XDR. Esses dados não parecem ser diferentes da análise do índice MAR (Multiple antibiotic resistance), que indicou que 10% das amostras eram multirresistentes. Todavia a aplicação das definições MDR, XDR e PDR em todo o mundo, parece ter como perspectiva a utilização de um método que permita melhor comparação de dados e ao mesmo tempo assegure adequada compreensão sobre a problemática da resistência bacteriana aos antimicrobianos MAGIORAKOS et al. (2012).
Independentemente da metodologia utilizada na avaliação dos perfis de resistência bacteriana aos antimicrobianos, nossos dados reforçam a importância de se debater a necessidade de se estabelecerem Programas de Monitoramento e Controle da Disseminação da Resistência Bacteriana aos Antimicrobianos, visto que, muitos são os impactos relacionados à Saúde Pública.

5.3 Da pesquisa dos marcadores de virulência e sorotipos de *Escherichia coli*

Dentre as 220 amostras de *E. coli* isoladas, duas (0,9%) foram positivas para os marcadores do patotipo ETEC (*eltB*, *estA* e *stl*). Informações complementares sobre as duas amostras podem ser visualizadas na tabela 6.

TABELA 6: Descrição da origem, natureza do alimento, quantitativo de coliformes a 45°C e dos fatores fenotípicos e genotípicos das amostras de ETEC.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Origem</th>
<th>Alimento</th>
<th>Coliforme a 45°C - NMP/g</th>
<th>Sorotipo</th>
<th>Índice MAR</th>
<th>Fatores de virulência</th>
</tr>
</thead>
<tbody>
<tr>
<td>3335 - E</td>
<td>PROGVISA</td>
<td>Pão de queijo</td>
<td>2,4 x 10³</td>
<td>O9:H33</td>
<td>0,0</td>
<td>eltB^+ estA^+ stl^+</td>
</tr>
<tr>
<td>3831 - A</td>
<td>DTA</td>
<td>Galinhada</td>
<td>1,5 x 10⁶</td>
<td>O9:H10</td>
<td>0,0</td>
<td>eltB^+ estA^+ stl^+</td>
</tr>
</tbody>
</table>

PROGVISA – Programa de Monitoramento da Qualidade de Alimentos da Vigilância Sanitária
DTA – Doença de Transmissão Alimentar
MAR – Multiple Antibiotic Resistance

Dados similares ao descrito no presente estudo, ou seja, com baixo percentual de amostras de *E. coli* diarrreógênica (STEC e ETEC) foram reportados por PANETO *et al.* (2007), ao analisarem 168 amostras de *E. coli*, provenientes de 50 queijos coletados na região Centro-Oeste do Brasil (Tocantins). Segundo os autores, apenas uma (2,0%) amostra foi classificada como ETEC e duas (4,0%) como STEC. FRANCO (1983), precursor dos estudos sobre *E. coli* diarrreógênica em alimentos no Brasil, ao analisar 1.351 amostras de *E. coli* obtidas de 287 alimentos diversos coletados em São Paulo, identificou 17 (1,3%) amostras de ETEC, cinco (0,4%) de EPEC e nenhuma do patotipo EIEC. Ressalta-se que, neste trabalho, as amostras dos patotipos EPEC e EIEC foram identificadas pela técnica de soroaglutinação e as amostras de ETEC por meio da pesquisa das enterotoxinas LT e ST, por meio da técnica de avaliação das alterações morfológicas de células de adrenal (células y-1) e por meio da análise de dilatação das
alças intestinais em camundongos recém-nascidos (provocada pelo acúmulo de fluidos devido à ação de enterotoxinas ST), respectivamente.

RIBEIRO (2013) não identificou patotipos STEC, EPEC e ETEC entre 169 amostras isoladas de queijo produzido por leite cru nos Estados de Minas Gerais, São Paulo e Sergipe. CHOMVARIM et al. (2005) também não reportaram a presença de qualquer patotipo diarreogênico (STEC, EPEC, ETEC, EAEC e EIEC) nas 140 amostras isoladas de alimentos prontos para consumo comercializados na Tailândia. Os dados obtidos por MELO (2015) corroboraram os resultados acima. O autor não evidenciou patotipos de E. coli diarreogênica (STEC, EPEC, ETEC, EAEC e EIEC) entre as 36 amostras isoladas de diversos alimentos coletados em Salvador/BA. Segundo DIAS (2011), dos 30 queijos Minas frescal coletados na região metropolitana do Rio de Janeiro, cinco (16,6%) estavam contaminados por amostras do patotipo EPEC. Os demais patotipos, ETEC, STEC, EAEC e EIEC, não foram identificados nos queijos analisados. HOFFMAN (2013) analisou a presença dos genes stx1, stx2, eae e ehxA em 87 amostras isoladas de leite pasteurizado proveniente de 22 laticínios no Paraná e não identificou a presença nenhum deles.

RUGELES et al. (2010), após analisarem 28 amostras obtidas de carnes e vegetais comercializados na Colômbia, relatam a presença de amostras de STEC (7,1%) e EAEC (3,6%) e a ausência dos patotipos ETEC e EPEC. GONÇALVES et al. (2013), relatam que, após analisarem 876 amostras isoladas de fontes humana, animal e alimentar, provenientes de todo Brasil, foram identificados produtos de amplificação correspondentes a marcadores de virulência em 143 (16,3%), sendo que os maiores percentuais de positividade foram obtidos para stx2 (44,7%), stx1 (28%), eae (19,6%), eagg (16,8%) e lt (12,6%). Os genes st e ial foram detectados em quatro e uma amostra, respectivamente. Percebe-se, portanto, baixo índice (2,0%) de identificação do patotipo ETEC.

Segundo PERESI et al. (2016), a avaliação de 70 quibes crus, coletados em São Paulo, resultou no isolamento de 403 amostras de E. coli. Destas, apenas duas (0,5%) foram identificadas como patotipo de STEC e em nenhuma das amostras foram identificados marcadores de virulência associados à ETEC, EPEC, EAEC e EIEC. STELLA (2009), ao analisar 22 amostras obtidas de leite in natura, provenientes de propriedades rurais Paulistas, observou a presença de uma amostra (4,5%) portadora do
gene *elt* (ETEC), três amostras (13,6%) do gene *stx1* (STEC) e uma (4,5%) do gene *stx2* (STEC).

Diferentemente dos dados do presente estudo e daqueles discutidos anteriormente, GUERREIRO (2012) evidenciou moderado percentual de ETEC (19,4%) e STEC (13,8%) entre 36 amostras de *E. coli* obtidas de refeições de pronto consumo. Segundo a autora, quatro (11,1%) apresentaram positividade para o gene *elt* e três (8,3%) para *est*. ALEIXO & AVÉR (1996) reportam índices moderado de EPEC (16%) e elevado de ETEC (40,0%), entre 187 amostras de *E. coli* obtidas de alimentos diversos. Nesta ocasião, as amostras do patótipo EPEC foram identificadas por meio da técnica de soroaglutinação e as de ETEC por meio da produção das enterotoxinas LT e ST, por meio da detecção indireta em ensaios de hemaglutinação de células de carneiro e por meio de ensaios utilizando camundongos recém-nascidos, respectivamente. PEDRO (2009), por sua vez, ao analisar 250 amostras provenientes de dez amostras de queijos, relatou altos percentuais (91,6%) de ETEC, seguido de baixos percentuais de EAEC (4,8%) e EPEC (0,4%).

No México, ROMAN-CANIZALEZ *et al.* (2013) conduziram um estudo de grandes proporções que avaliou a presença de *E. coli* diarrêico-gênica em 5.162 alimentos diversos. Em sua avaliação, das 409 amostras de *E. coli* isoladas, 56 (13,6%) pertenciam a algum patótipo diarrêico-gênico. O tipo patogênico mais comum foi EPEC (78,5%), seguido de EAEC (10,7%), STEC (8,9%) e ETEC (1,7%). EIEC e DAEC não foram identificados entre as amostras. Neste estudo, os produtos lácteos foram os mais frequentemente contaminados por amostras diarrêico-gênicas de *E. coli*.

DIAS (2009) investigou a presença de *E. coli* produtora de toxina Shiga (*stx1* e *stx2*) e do gene *eae* em 59 queijos muçarela produzido artesanalmente em Minas Gerais. Das 149 amostras de *E. coli* isoladas, 16 (10,8%) foram caracterizadas como STEC, uma vez que todas portavam os genes *stx1* e *eae*. OKURA (2010), em estudo similar, também avaliou a presença do patótipo STEC entre 111 amostras de queijos Minas frescal, produzidos na região do Triângulo Mineiro, entretanto, não identificou nenhuma amostra de STEC.

LIMA *et al.* (2013) avaliaram a presença dos patótipos EPEC e STEC, entre 250 amostras de *E. coli* obtidas de carne moída comercializada em Londrina. Destas, nenhuma foi identificada como EPEC e apenas duas (0,8%) foram caracterizadas como
STEC. BERGAMINI et al. (2007) também estudaram a ocorrência de STEC em carne bovina moída comercializadas no Estado de São Paulo. Das 250 amostras de carne analisadas, a bactéria foi detectada em quatro amostras (3,5%).

Baixo índice de STEC também foi identificado por RODOLPHO & MARIN (2007), em São Paulo, ao pesquisarem o patotipo STEC em 91 amostras de E. coli, provenientes de carne moída e 154 isoladas de moedores de carne. Segundo os autores, STEC foi detectada em 2,1% das amostras de E. coli provenientes da carne moída e 1,2% das isoladas de moedores de carne. Na França, MADIC (2011), por sua vez, analisou 400 queijos (265 produzidos com leite cru e 135 com leite pasteurizado) quanto à presença de STEC e identificou a presença de 22 queijos (5,5%) positivos, sendo a maior parte das amostras de STEC pertencente ao sorogrupo O26.

Como visto, parece haver uma grande preocupação não só no Brasil, mas em todo o mundo com relação à presença de E. coli patogênica do grupo STEC. Tal preocupação, certamente, está associada à gravidade do quadro clínico desencadeado por este patotipo. CALDORIN et al. (2013), em seu levantamento de dados compreendendo o período de 1999 a 2011, analisaram a presença de STEC em alimentos no Brasil e constataram que os índices de prevalência, variaram de 1,3% a 18,10%. A maior parte das amostras relatadas pertenciam a sorogrupos de STEC não O157 e em apenas uma amostra de carne moída foi reportada a contaminação pelo sorotipo O157:H7. Segundo SILVA et al. (2010), parece haver predominância de sorotipos STEC não O157 na Europa, Austrália e América do Sul. Já as amostras STEC O157 são mais comuns na América do Norte e Japão.

É importante ressaltar que essa variação entre os percentuais de recuperação de E. coli diarreogênica de alimentos irá depender, além da origem e tipos de alimentos analisados, dos métodos utilizados (se por meio de bioensaios ou métodos moleculares), da etapa de análise em que é realizada a pesquisa dos marcadores de virulência e da escolha dos mesmos. Sabe-se, por exemplo, que quanto maior o número de cultivos realizados durante a fase de seleção das amostras, maior será a probabilidade de perda de elementos móveis responsáveis por conter os genes de virulência, comprometendo o diagnóstico.

Nesse contexto MENG et al. (2001), também reportam que a elevada temperatura (de 45°C) usada na técnica do Número Mais Provável para estimar o número
de coliformes a 45ºC pode ocasionar a perda de plasmídeos bacterianos, que muitas vezes estão associados à veiculação e disseminação da resistência antimicrobiana e dos fatores de virulência.

Outro aspecto relevante na pesquisa de *E. coli* patogênica, refere-se ao fato de que a ausência dos marcadores de virulência típicos de *E. coli* diarreigênica, não significa, necessariamente, que estas sejam amostras comensais, uma vez que as mesmas podem ser portadoras de outros fatores de virulência, tais como os genes de virulência característicos de *E. coli* patogênica extra intestinal (ExPEC), responsáveis, por exemplo, por quadros de meningite neonatal e infecções do trato urinário. ABREU (2010) e OKURA (2010), por exemplo, reportam que amostras de ExPEC já foram isoladas em alimentos crus, carne bovina e de aves, indicando-as como uma nova classe de patógenos transmissíveis por alimentos. Segundo RIBERIRO (2013), 10,6% das 169 amostras de *E. coli* isoladas de queijo albergavam genes de ExPEC.

Conforme demonstrado na tabela 9, as duas amostras de ETEC identificadas no presente estudo foram obtidas de um pão de queijo, provenientes do PROGVISA e de uma galinhada, envolvida em um surto de DTA. O referido surto ocorreu em um centro religioso, no município de Nepomuceno/Minas Gerais, e pelo menos cinco pessoas adoeceram após o consumo da galinhada. Todos os envolvidos apresentaram vômito, náusea e cólica abdominal, após cinco horas do consumo do alimento. Na ocasião, não foi isolado nenhum enteropatógeno do material clínico (fezes) dos envolvidos e da água de consumo. Neste evento também não foi identificado nenhum outro micro-organismo na galinhada ou em outro alimento que justificasse o quadro de toxinfecção, indicando, portanto, se tratar de uma possível DTA por ETEC.

Segundo CROXEN *et al.* (2013), estima-se que ocorram anualmente cerca de 840 milhões de casos de infecções por ETEC em países em desenvolvimento, sendo, aproximadamente, 240 milhões deles em crianças de 0 a 4 anos de idade. Em países desenvolvidos, por sua vez, dados apontam que 13,0% das diarreias em crianças são provocadas por ETEC e, aproximadamente, 325.000 mortes por ano ocorrem em função de infecção por este patotipo de *E. coli*. No Egito, 84% das crianças com até três anos de idade, apresentam pelo menos um episódio de diarreia por ETEC. Com relação aos adultos, apesar da diminuição dos casos de infecção por ETEC entre viajantes para a
América Latina e para África, este ainda é considerado um dos principais agentes diarreogênicos, sendo observado em 30% dos casos de doença diarreica.

Segundo BEATTY et al. (2004), o CDC norte americano investigou 59 surtos suspeitos de ETEC, no período de 1996 a 2003, e confirmou a ocorrência de 16 (três em cruzeiros internacionais e 13 de origem doméstica). Os 16 surtos apresentaram uma média de 41 doentes por evento e um total de 2.865 comensais. Os veículos de contaminação foram os mais diversos, incluindo água (nos cruzeiros), vegetais frescos, carnes, arroz, feijão e saladas diversas. Nos 16 eventos foram identificados oito sorotipos distintos, sendo o O6:H141 (produtor somente de ST) detectado em 10 deles. Estudos anteriores ao ano de 1996 demonstram que este sorotipo somente havia sido identificado uma única vez entre 21 surtos de ETEC confirmados nos EUA.

SILVEIRA et al. (2013) relataram a análise de 1.038 amostras de E. coli, provenientes de vários doentes portugueses, entre os anos de 2002 e 2012. Segundo os autores 497 (47,9%) apresentaram resultados positivos relativos à presença de um ou mais fatores de virulência. Nesse período, o patotipo detectado com maior frequência foi ETEC (36,6%), seguido de EAEC (26,7%), STEC (25,3%) e EPEC (8,5%).

As duas amostras identificadas no presente estudo albergavam os genes eltB, estA e st1, que codificam as enterotoxinas LT, STp e STh, respectivamente (Figura 5). WOLF (1997), após analisar dados de 798 amostras de ETEC em 16 países, reportou 46,4% produtoras de ST, 24,6% de LT e 28,9% de LT/ST. Dados mais recentes, reportados por CROXEN et al. (2013) em uma ampla revisão de literatura que abrangeu
35 países, apontam que 45,0% das amostras de ETEC produziram a enterotoxina ST, 27% a LT e 33% ambas as enterotoxinas.

FIGURA 5: Eletroforese em gel de agarose. Canaleta 01: padrão de peso molecular (100pb); canaleta 02: controle positivo *Escherichia coli* H10407, com *amplicons* de 273 pb (*eltB*), 166 pb (*esta*) e 120 pb (*st1*); canaleta 03: controle negativo *Escherichia coli* ATCC 25922; canaletas 04, 05 e 06 amostras negativas; canaleta 07 amostra 3831-A, positiva para os marcadores *eltB*, *esta* e *st1*

Durante muitos anos a sorotipagem foi o principal mecanismo de diagnóstico existente para diferenciação de amostras de *E. coli* patogênica e comensal. Hoje, com o advento das análises genéticas, que permitem identificação dos fatores de virulência, a sorotipagem perdeu valor. Todavia, o conhecimento dos sorogrupos e/ou sorotipos de *E. coli* patogênicas, podem fornecer informações úteis para caracterização epidemiológica e clínica das amostras que compõe os diferentes patotipos de *E. coli*.

No presente estudo, as duas amostras de ETEC isoladas foram caracterizadas com os sorotipos O9:H33 e O9:H10. Nenhuma delas mostrou-se resistente a qualquer dos fármacos avaliados neste trabalho. Não identificamos, em ampla pesquisa realizada na literatura, relato de amostras de *E. coli* destes sorotipos isoladas de alimentos. Somente nos anos 80, BINSZTEIN *et al.* (1982), após investigarem 615 amostras de *E. coli* isoladas de fezes diarréicas de crianças em Buenos Aires/Argentina, relataram a
presença do sorotipo O9:H10. Neste estudo, após pesquisa das enterotoxinas LT e ST por métodos de bioensaio utilizando camundongo, observou-se que as amostras do sorotipo O9:H10 eram produtoras apenas da enterotoxinas ST.

De acordo com NATARO & KAPER (1998); JAY (2005); ORDENEZ (2005); GUERREIRO (2012) e CROXEN et al. (2013), amostras de ETEC estão associadas a um grande número de sorogrupos, mas O6, O8, O9, O15, O20, O25, O27, O64, O68, O77, O78, O101, O114, O115, O126, O128, O138, O139, O141, O148, O149 e O157 são, aparentemente, os mais comuns e encontrados em vários países. GYLES & FAIRBROTHER (2010), por sua vez, apontaram os sorogrupos O8, O11, O15, O20, O25, O27, O78, O128, O148, O149 e O173 como os mais frequentes causadores de doenças em seres humanos. CAMPOS et al. (2000) corroboraram os relatos acima, uma vez que, ao analisarem 805 amostras de E. coli diarrreogênica provenientes de fezes diarréicas de crianças, observaram que 13 (1,6%) pertenciam ao patotipo ETEC e todas ao sorogrupo O128.

No que se refere à presença de ETEC em alimentos, ERNANDEZ & HOFER (1987), ao analisarem 250 amostras de E. coli, provenientes de 137 amostras de leite, queijo e carne, identificaram 34 amostras de ETEC distribuídas entre os sorogrupos O8, O11, O15, O20, O25, O27, O78, O128, O148 e O149. BEATTY et al. (2004), ao
investigar 16 surtos por ETEC ocasionados por diversos alimentos, reportaram contaminação com os sorogrupos O6, O25, O27, O34, O148, O159, 8169 e O178.

Conforme percebido, existe, não somente entre as amostras de ETEC, mas também nos demais patótipos de E. coli diarreogênica, uma enorme quantidade de sorogrupos O e H e, por conseguinte, de sorotipos associados com doenças em seres humanos e animais. Alguns destes, ainda apresentam ocorrência, distribuição e patogenicidade pouco conhecidos.
6. CONCLUSÕES

Dos diversos tipos de alimentos analisados quanto ao parâmetro de coliformes a 45°C, os produtos lácteos (coletados no PROGVISA) e as refeições de pronto consumo (surtos de DTA), foram as categorias que apresentaram maior percentual de alimentos contaminados, caracterizando-as como os principais veículos de contaminação associados a esse grupo microbiano.

O maior percentual de amostras resistentes foi observado entre os antimicrobianos da classe β lactâmicos, em especial a ampicilina. Por sua vez, os da classe aminoglicosídeos (amicacina e gentamicina) foram os agentes mais eficazes, destacando-se como possíveis fármacos de primeira escolha em procedimentos terapêuticos associados a *E. coli*. A múltipla resistência antimicrobiana, ainda que em baixo percentual, foi identificada entre as amostras de *E. coli* isoladas de alimentos, fato preocupante para a Saúde Pública, devido à limitação imposta à antibioticoterapia.

No que se refere à presença de *E. coli* diarreogênica, não foi observada a presença de marcadores de virulência característicos dos patotipos EPEC, STEC, EAEC e EIEC. A presença de ETEC, identificada em baixo percentual, foi encontrada em um alimento coletado pelo PROGVISA (pão de queijo) e um em surtos de DTA (galinhada), reforçando a necessidade de monitoramento da presença de *E. coli* diarreogênica em alimentos. As referidas amostras de ETEC foram positivas para os marcadores *eltB*, *estA* e *st1*, responsáveis pela produção das enterotoxinas LT, STp e STh, respectivamente. As amostras de ETEC foram caracterizadas como sorotipos O9:H10 e O9:H33. Até o momento, amostras de *E. coli* incluídas nestes sorotipos não haviam sido isoladas de alimentos.
7. REFERÊNCIAS BIBLIOGRÁFICAS

SILVA, M.C. Avaliação da qualidade microbiológica de alimentos com a utilização de metodologias convencionais e do sistema simplate. Dissertação [Mestrado em Ciência e Tecnologia de Alimentos]. Escola Superior de Agricultura - Universidade de São Paulo, São Paulo, SP, 2002.

Acesso: jan. 2015.

8. ANEXOS

<table>
<thead>
<tr>
<th>Categoria de alimentos</th>
<th>PROGVISA</th>
<th>SURTOS DE DTA</th>
<th>TOTAL (a + c) / (b + d) %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alimentos Analisados a</td>
<td>*Alimentos Reprovados b</td>
<td>Alimentos Analisados c</td>
</tr>
<tr>
<td>1. Massas e salgados (pizza, lasanha, pães de queijo, salgados diversos etc)</td>
<td>51</td>
<td>04 (2,0%)</td>
<td>12</td>
</tr>
<tr>
<td>2. Carne e derivados</td>
<td>04</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>3. Especiarias (canela, orégano e pimenta do reino)</td>
<td>55</td>
<td>05 (9,1%)</td>
<td>----</td>
</tr>
<tr>
<td>4. Gelados comestíveis (sorvetes e picolés)</td>
<td>11</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>5. Hortaliças (alface, rúcula e couve flor)</td>
<td>05</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>6. Produtos Lácteos (leite em pó, pasteurizado, UHT e queijos diversos)</td>
<td>102</td>
<td>06 (5,7%)</td>
<td>08</td>
</tr>
<tr>
<td>7. Produtos de panificação (bolos e sobremesas)</td>
<td>----</td>
<td>----</td>
<td>24</td>
</tr>
<tr>
<td>8. Pratos pronto para consumo (arroz, farofa, feijão, purês, saladas diversas, salpicão e outros)</td>
<td>----</td>
<td>----</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>228</td>
<td>15 (6,7%)</td>
<td>168</td>
</tr>
</tbody>
</table>

Fonte: elaborado pelo autor (extraído do banco de dados da Fundação Ezequiel Dias/2015)

* Reprovados segundo padrões da legislação RDC 12 de 2001 da ANVISA.

<table>
<thead>
<tr>
<th>Categoria de alimentos</th>
<th>PROGVISA -MG</th>
<th>Parâmetros microbiológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alimentos Analisados</td>
<td>Alimentos Reprovados</td>
</tr>
<tr>
<td>1. Massas e salgados (pizza, lasanha, pães de queijo e salgados diversos)</td>
<td>51</td>
<td>04 (2,0%)</td>
</tr>
<tr>
<td>2. Carne e derivados (embrutidos)</td>
<td>04</td>
<td>0</td>
</tr>
<tr>
<td>3. Especiarias (canela, orégano e pimenta do reino)</td>
<td>55</td>
<td>05 (9,1%)</td>
</tr>
<tr>
<td>4. Gelados comestíveis (sorvetes e picolés)</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>5. Hortalisias (alface, rúcula e couve flor)</td>
<td>05</td>
<td>0</td>
</tr>
<tr>
<td>6. Produtos Lácteos (leite em pó, pasteurizado, UHT e queijos diversos)</td>
<td>102</td>
<td>06 (5,7%)</td>
</tr>
<tr>
<td>7. Produtos de panificação (bolos e sobremesas)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>8. Pratos pronto para consumo (arroz, farofa, feijão, purês, saladas diversas, salpicão e outros)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Total</td>
<td>228 (100%)</td>
<td>15 (6,7%)</td>
</tr>
</tbody>
</table>

Fonte: elaborado pelo autor (extraído do banco de dados da Fundação Ezequiel Dias/2015)

- Dos 228 alimentos analisados, provenientes do PROGVISA-MG, 6,7% apresentaram-se contaminados em pelo menos um parâmetro microbiológico, 4,8% em Coliformes a 45ºC e 1,3% em E.C.P e *Salmonella*.
- a (dois pães de queijo); b (dois pães de queijo e uma massa de bata); c (três pimentas do reino); d (cinco queijos e um leite pasteurizado);
ANEXO C: Quantitativo de alimentos coletados nos surtos de DTA ocorridos em Minas Gerais, no período de janeiro de 2014 a julho de 2015, analisados e contaminados com pelo menos um dos seguintes micro-organismos: *Bacillus cereus*, coliformes a 45°C, Clostrídio sulfito redutor (C.S.R), Estafilococos coagulase positiva (E.C.P), *Listeria monocytogones* e *Salmonella* spp.

<table>
<thead>
<tr>
<th>Categoria de alimentos</th>
<th>SURTOS DE DTA</th>
<th>Parâmetros microbiológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alimentos Analisados</td>
<td>Alimentos Contaminados</td>
</tr>
<tr>
<td>1. Massas e salgados (macarronada e salgados diversos)</td>
<td>12</td>
<td>08</td>
</tr>
<tr>
<td>2. Carne e derivados</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>3. Especiarias (canela, orégano e pimenta do reino)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>4. Gelados comestíveis (sorvetes e picolés)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>5. Hortaliças (alface, rúcula e couve flor)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>6. Lácteos (leite em pó, pasteurizado, UHT e queijos diversos)</td>
<td>08</td>
<td>02</td>
</tr>
<tr>
<td>7. Produtos de panificação (bolos e sobremesas)</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>8. Pratos pronto para consumo (arroz, farofa, feijão, purés, saladas diversas, salpicão e outros)</td>
<td>80</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>168 (100%)</td>
<td>75 (44,6%)</td>
</tr>
</tbody>
</table>

Fonte: elaborado pelo autor (extraído do banco de dados da Fundação Ezequiel Dias/2015)