PCR NESTED – MULTIPLEX: DETECÇÃO DE ORTHOPOXVIRUS E PARAPOXVIRUS DIRETAMENTE DE AMOSTRAS CLÍNICAS

LARISSA SIQUEIRA LIMA AMORA

Belo Horizonte/ 2013
LARISSA SIQUEIRA LIMA AMORA

PCR NESTED – MULTIPLEX: DETECÇÃO DE *ORTHOPOXVIRUS* E *PARAPOXVIRUS* DIRETAMENTE DE AMOSTRAS CLÍNICAS

Monografia apresentada ao Departamento de Microbiologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como parte dos requisitos para obtenção do título de especialista em Microbiologia.

Orientador: Jônatas Abrahão

Belo Horizonte/ 2013
AGRADECIMENTOS

Agradeço a Deus por me permitir a realização de mais uma etapa, aos meus pais e irmão por compreenderem a minha ausência e principalmente ao meu marido, Rômulo, pelo incentivo e amor incondicional.

Agradeço a Professora Erna Kroon pela oportunidade de aprendizagem no Laboratório de Vírus desta Universidade (UFMG), no qual pude fazer parte de trabalhos importantes. Ao meu ilustre orientador Jônatas Abrahão pela paciência, incentivo e seus valiosos ensinamentos.

Aos colegadas do Curso de Especialização em Microbiologia com quem pude conviver e compreender que sempre poderemos mais.

Ao CNPq, FAPEMIG e CAPES pelo apoio financeiro.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE ABREVIATURAS..III</td>
</tr>
<tr>
<td>LISTA DE FIGURAS..VI</td>
</tr>
<tr>
<td>LISTA DE TABELAS...VIII</td>
</tr>
<tr>
<td>RESUMO..IX</td>
</tr>
<tr>
<td>ABSTRACT...X</td>
</tr>
<tr>
<td>1. INTRODUÇÃO..15</td>
</tr>
<tr>
<td>1.1. Família Poxviridae: Classificação..15</td>
</tr>
<tr>
<td>1.2. Estrutura da Partícula e do Genoma...17</td>
</tr>
<tr>
<td>1.3. Multiplicação Viral...20</td>
</tr>
<tr>
<td>1.4. Orthopoxvirus (OPXV)..24</td>
</tr>
<tr>
<td>1.5. Parapoxvirus (PPV)..28</td>
</tr>
<tr>
<td>1.6. Ocorrência de Orthopoxvirus e Parapoxvirus no Brasil........................30</td>
</tr>
<tr>
<td>1.7. Testes de diagnósticos para Orthopoxvirus e Parapoxvirus...............33</td>
</tr>
<tr>
<td>2. JUSTIFICATIVA...36</td>
</tr>
<tr>
<td>3. OBJETIVOS..38</td>
</tr>
<tr>
<td>3.1. Objetivo Geral...38</td>
</tr>
<tr>
<td>3.2. Objetivos Específicos...38</td>
</tr>
<tr>
<td>4. MATERIAIS E MÉTODOS..39</td>
</tr>
<tr>
<td>4.1. Células Vero...39</td>
</tr>
<tr>
<td>4.2. Vírus..39</td>
</tr>
</tbody>
</table>
4.2.1. Origem das amostras..39

4.3. Reação em cadeia da polimerase (PCR)..41

4.3.1. Padronização de uma PCR nested multiplex para a detecção de Orthopoxvirus e Parapoxvirus...41

4.4. Teste de Sensibilidade da PCR nested – multiplex..45

4.5. Teste Aplicabilidade e especificidade da técnica...46

5. RESULTADOS..47

5.1. Reação em cadeia da polimerase (PCR)..47

5.1.1. Padronização da PCR nested – multiplex...47

5.2. Testes de sensibilidade e especificidade da PCR...50

5.3. PCR nested – multiplex PCR para a detecção de Orthopoxvirus e Parapoxvirus em espécimes clínicos coletados de surtos ocorridos no Brasil..52

6. CONCLUSÃO...55

7. REFERÊNCIA BIBLIOGRÁFICA..57
AFM: MICROSCOPIA DE FORÇA ATÔMICA
ARGV: VÍRUS ARGINITA
ATCC: AMERICAN TYPE CULTURE COLLECTION
ATI: CORPÚSCULO DE INCLUSÃO DO TIPO-ACIDÓFILO
B: BOVINO;
B2L: GLICOPROTEÍNA PRESENTE NA MEMBRANA DO VÍRUS DO GÊNERO PPV
BPSV: VÍRUS DA ESTOMATITE PAPULAR BOVINA
BPXV: BUFFALOPOX VIRUS
BSA: (ALBUMINA SÉRICA BOVINA)
C: CAPRINO;
CEVS: VÍRUS ENVELOPADOS CÉLULA-ASSOCIADO
CO2: GÁS CARBÔNICO
CPXV: COWPOX VIRUS
DATP: DIDEOXIADENOSINA TRIFOSFATO
DCTP: DIDEOXICITOSINA TRIFOSFATO
DGTP: DIDEOXIGUANIDINA TRIFOSFATO
DNA: ÁCIDO DEXIRRIBONUCLEÍCO
DTTP: DIDEOXITIMIDINA TRIFOSFATO
EC: ECTIMA CONTAGIOSO
EEV: VÍRUS ENVELOPADO EXTRACELULAR
ELISA: ENZYME LINKED IMMUNO SORBENT ASSAY
FIOCRUZ: FUNDAÇÃO OSWALDO CRUZ
GP1V: VÍRUS GUARANI P1
GP2V: VÍRUS GUARANI P2
H: HUMANO;
ICTV: INTERNATIONAL COMMITTEE ON TAXONOMY OF VIRUSES
IEVS: VÍRUS ENVELOPADOS INTRACELULAR
IMA: INSTITUTO MINEIRO DE AGROPECUÁRIA
IMV: VÍRUS INTRACELULAR MADURO
ITRS: REPETIÇÕES TERMINAIS INVERTIDAS
IVS: VÍRUS IMATUROS
JQRV: VÍRUS JEQUERI
LINV: VÍRUS LINHAES
MARV: VÍRUS MARIANA
MCA: MEMBRANA CORIOALANTÓIDE
MGCl₂: CLORETO DE MAGNÉSIO
MOCV: VÍRUS MOLUSCO CONTAGIOSO
MPXV: MONKEYPOX VIRUS
MRNA: ÁCIDO RIBONUCLEICO MENSAGEIRO
O: OVINO
OMS: ORGANIZAÇÃO MUNDIAL DA SAÚDE

OPXV: ORTHOPOXVIRUS

PBS: TAMPÃO SALINA FOSFATO

PCPV: PSEUDOCOWPOXVIRUS

PCR: REAÇÃO EM CADEIA DA POLIMERASE

PPV: PARAPOXVIRUS

PRGV: VÍRUS PARAGUAÇU

PSTV: VÍRUS PASSATEMPO

PVNZ: PARAPOXVIRUS DE CERVOS DA NOVA ZELÂNDIA

RNA: ÁCIDO RIBONUCLEÍCO

RPLV: VÍRUS RESPLENDOR

SFB: SORO FETAL BOVINO

SV: VÍRUS SERVO

TK: TIMIDINA QUINASE

UFMG: UNIVERSIDADE FEDERAL DE MINAS GERAIS

VACV: VACCINIA VIRUS

VGF: FATOR DE CRESCIMENTO DE VACCINIA VIRUS
LISTA DE FIGURAS

FIGURA 2: Representação esquemática das características estruturais e funcionais do genoma dos vírus do gênero Orthopoxvirus. A molécula de DNA dupla-fita é conectada, nas suas extremidades, por alças ricas em adenina e timina, formando uma cadeia nucleotídica covalentemente fechada. As repetições terminais invertidas (ITRs) são seqüências idênticas, opostamente orientadas e estão localizadas nas duas extremidades do genoma. (Fonte: DAMON, 2007- modificado).

Figura 5: Lesões faciais causadas por infecção de Cowpox virus após contato com roedor peridomiciliar - Fonte: WOLFS, 2002.

Figura 6: Lesões causadas por uma coinfecção envolvendo VACV e PCPV. (A) Lesão exantemática no dedo de um paciente, adquirida após contato com gado que apresentava coinfeccção: VACV/PCPV. (B) Lesão ulcerativa na teta de uma vaca que apresentava coinfeccção: VACV/PCPV. Fonte: ABRAHÃO et al., 2010.
FIGURA 7: Exemplo de lesões causadas por *Vaccinia virus* durante surtos de VB no Brasil. (A) Lesões ulcerativas em tetas de vacas, e (B) no focinho de um bezerro. (C) e (D) lesões nas mãos de ordenhadores. Fonte: Madureira (2009) – modificado.

Figura 9: Padronização da PCR nested – multiplex para a detecção de OPV/PPV. As amostras utilizadas foram coletadas em surtos de VB e EC. Nas canaletas 1, 2 e 3 foram adicionadas as amostras de crostas e vesículas de OPV oriundas de surtos de vaccínia bovina (VB) amplificadas pelo gene *vgf* a qual apresenta uma banda de 170 pb; nas canaletas 4, 5 e 6 estão representadas amostras de crostas de PPV coletadas de surtos de ectima contagioso amplificados pelo gene *b2l* apresentando uma banda de 592 pb. A canaleta 7 apresenta o controle negativo, onde não foi observada amplificação. As canaletas 8 e 9 representam uma simulação de coinfeccão por OPV e PPV. As amostras foram fracionadas a 100V em PAGE 8% e coradas pela prata.

Figura 10: Teste de sensibilidade da PCR nested – multiplex. Fragmentos de *vgf* e *b2l* obtidos através da clonagem em p-GEMT foram submetidos a PCR nested – multiplex em diferentes concentrações. A 1ª canaleta está representada com padrão de tamanho molecular de 1Kb. As canaletas de 2 a 7 estão mostrando as diluições de 50ng a 1ng. A ultima canaleta representa o controle negativo. As amostras foram fracionadas a 100V em PAGE 8% e coradas pela prata.
LISTA DE TABELAS

Tabela 1: Classificação dos *Chordopoxvirus*.

Tabela 2: Amostras brasileiras utilizadas no estudo

Tabela 3: Relação dos iniciadores de OPV/PPV utilizados na padronização da PCR nested-multiplex.

RESUMO

A família *Poxviridae* compreende os maiores e mais complexos vírus animais, capazes de infectar hospedeiros vertebrados e invertebrados; ela está subdividida em duas grandes subfamílias *Chordopoxvirinae* e *Entomopoxvirinae*, que infectam hospedeiros vertebrados e invertebrados, respectivamente. Apenas os membros da subfamília *Chordopoxvirinae* são capazes de infectar hospedeiros vertebrados. Os *Orthopoxvirus* (OPV) e *Parapoxvirus* (PPV), gêneros desta subfamília, têm sido associados com surtos exantemáticos em todo o mundo. Algumas espécies desses gêneros são capazes de infectar humanos e animais domésticos, causando sérias perdas econômicas e impacto na saúde pública. Para detectar e monitorar epidemiologicamente tais poxvírus são requeridos métodos rápidos, eficientes e com alta especificidade. Neste trabalho é descrito o desenvolvimento de uma PCR nested – multiplex; este método detecta simultaneamente espécies de OPV e PPV diretamente de lesões exantemáticas sem a prévia extração do DNA viral ou isolamento do vírus. A PCR nested – multiplex para OPV/PPV foi desenvolvida baseada na avaliação e combinação de sets de primers publicados, e foi aplicado para a detecção dos patógenos alvo. O método mostrou alta sensibilidade, e a especificidade foi confirmada com o seqüenciamento do amplificado. Amostras de lesões exantemáticas coletadas durante surtos de vaccinia bovina (VB) e ectima contagioso (EC) foram submetidas a PCR nested – multiplex para OPV/PPV confirmando sua aplicabilidade. Estes resultados sugerem que a PCR multiplex apresentada prevê uma alta robustez e alta sensibilidade do método para detectar OPV e PPV diretamente de amostras clínicas. O método pode ser usado para identificação e monitoração viral, especialmente em áreas onde há co-circulação de OPV e PPV.
ABSTRACT

The Poxviridae family contains the largest and most complex animal viruses capable of infecting vertebrate and invertebrate hosts, it is divided into two wide subfamilies Chordopoxvirinae and Entomopoxvirinae that infect vertebrate and invertebrate hosts, respectively. Only members of the Chordopoxvirinae subfamily are capable of infecting vertebrate host. The Orthopoxvirus (OPV) and Parapoxvirus (PPV), genera of this subfamily, have been associated with exanthema outbreaks worldwide. Some species of these genera are capable of infecting humans and domestic animals, causing serious economic losses and public health impact. Fast and efficient methods with high specificity are required to detect and epidemiologically monitor such poxviruses. At the present work is described the development of a multiplex nested PCR which detects both types of PPV and OPV rashes injuries directly, without prior viral DNA extraction or virus isolation. Based on the evaluation and combination of sets of published primers the multiplex nested PCR for OPV / PPV was developed and applied to the detection of target pathogens. The method showed high sensitivity and sequencing of the amplified confirmed the specificity. The multiplex nested PCR for OPV / PPV were used for analysis of rash injuries samples collected during outbreaks of bovine vaccinia (BV) and contagious ecthyma (CE), confirming its applicability. These results suggest that the presented multiplex PCR provides a high robustness and high sensitivity method for detecting OPV and PPV directly from clinical specimens. The method can be used for virus identification and monitoring, especially in areas where there is PPV and OPV at the same time.
1. INTRODUÇÃO

1.1. Família *Poxviridae*: Classificação

A família *Poxviridae* está subdividida em duas grandes subfamílias: *Entomopoxvirinae* e *Chordopoxvirinae* que infectam invertebrados e vertebrados, respectivamente (HUGHES, IRAUSQUIN, FRIEDMAN, 2010). As subfamílias estão, por sua vez, subdivididas em gêneros, diferenciados pela presença de antígenos comuns específicos (ICTV, 2012). Apenas os membros da subfamília *Chordopoxvirinae* são capazes de infectar hospedeiros vertebrados sendo que quatro dos seus onze gêneros contêm espécies que causam doenças em seres humanos (Tabela1). (ESSBAUER, PFEFFER, MEYER, 2009).

<table>
<thead>
<tr>
<th>GÊNERO</th>
<th>PROTÓTIPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avipoxvirus</td>
<td>Fowlpox vírus</td>
</tr>
<tr>
<td>Capripoxvirus</td>
<td>Sheeppox vírus</td>
</tr>
<tr>
<td>Cervidpoxvirus</td>
<td>Mule deerpox vírus</td>
</tr>
<tr>
<td>Crocdyildpoxvirus</td>
<td>Nile crocodilepox vírus</td>
</tr>
<tr>
<td>Leporipoxvirus</td>
<td>Myxoma vírus</td>
</tr>
<tr>
<td>Molluscipoxvirus</td>
<td>Molluscum contagiosum vírus</td>
</tr>
<tr>
<td>Orthopoxvirus</td>
<td>Vaccinia vírus</td>
</tr>
<tr>
<td>Parapoxvirus</td>
<td>Orf vírus</td>
</tr>
<tr>
<td>Suipoxvirus</td>
<td>Swinepox vírus</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Squirrelpox vírus</td>
</tr>
<tr>
<td>Yatapoxvirus</td>
<td>Tanapox vírus</td>
</tr>
</tbody>
</table>

Fonte: International Committee on Taxonomy of Viruses, 2012

Muitos destes *Chordopoxvirus* podem causar infecções graves em espécies animais domésticos e selvagens, incluindo ovinos, caprinos, bovinos,
crocodilos, jacarés, aves, perus e avestruzes. Consequentemente, esses agentes podem ter efeitos devastadores na produção animal, resultando em consideráveis perdas econômicas (EMERSON et al., 2009).

Os gêneros da família Poxviridae capazes de infectar humanos incluem membros dos gêneros Orthopoxvirus, Parapoxvirus, Yatapoxvirus e Molluscipoxvirus, mas outros vírus da família podem causar doenças em animais domésticos e silvestres (revisado por DAMON, 2007).

1.2. Estrutura da Partícula e do Genoma

As partículas virais dos poxvírus são geralmente ovóides, em forma de tijolo, ou pleomórficas, medindo 140-260 nm de diâmetro, ou 220-450 nm de diâmetro, sendo possível sua visualização por microscopia de luz (ESSBAUER, PFEFFER, MEYER, 2009). O cerne, em forma de halter (FIGURA 1B), envolve o material genético, enzimas e fatores de transcrição de genes precoces. Uma membrana lipídica, contendo túbulos de superfície arranjados irregularmente (FIGURA 1A), envolve o cerne e dois corpúsculos laterais, cuja função e composição química ainda são pouco definidas (FIGURA 1C) (revisado por DAMON, 2007).

Os poxvírus possuem como genoma uma molécula de DNA de fita dupla que varia de 130-230 kpb. Todos poxvírus analisados têm repetições terminais invertidas (ITRs), que consistem de seqüências idênticas, mas opostamente orientadas nas duas extremidades do genoma. (MOSS, 2013) As ITRs são sequências de fundamental importância para a partícula viral, pois codificam vários genes responsáveis pelas interações vírus-hospedeiro e pelos mecanismos de patogênese (revisado por FERREIRA, 2008).
A porção central do genoma dos poxvirus é altamente conservada, neste local contém a maioria dos genes envolvidos em funções essenciais, tais como a transcrição, replicação de DNA e a montagem do vírus. Em contraste, os genes encontrados nas extremidades do genoma são, geralmente, específicos da espécie e codificam fatores de virulência que modulam o sistema imune do hospedeiro (BAHAR et al, 2011). A ausência de infecções latentes e a não-integração no genoma do hospedeiro justificam a importância de genes que protejam os poxvírus do sistema imune durante uma infecção (DAMON, 2007; HUGHES & FRIEDMAN, 2005).

A molécula de DNA dupla-fita é conectada em suas porções terminais por seqüências nucleotídicas de fitas simples em A + T (alças), contendo aproximadamente 100 bases. As extremidades do genoma do Vaccinia virus (VACV) estão representadas na FIGURA 2. As ITRs são variáveis de comprimento devido as deleções, repetições, e transposições. (MOSS, 2001; ICTV, 2013).
FIGURA 2: Representação esquemática das características estruturais e funcionais do genoma dos vírus do gênero Orthopoxvirus. A molécula de DNA dupla-fita é conectada, nas suas extremidades, por alças ricas em adenina e timina, formando uma cadeia nucleotídica covalentemente fechada. As repetições terminais invertidas (ITRs) são seqüências idênticas, opostamente orientadas e estão localizadas nas duas extremidades do genoma. (Fonte: DAMON, 2007 - modificado).

1.3. Multiplicação Viral

O ciclo de multiplicação dos poxvírus é complexo devido à existência de várias formas infecciosas e possui uma peculiaridade dentre os vírus de DNA de animais: ocorre inteiramente no citoplasma da célula hospedeira (FIGURA 3). (DAMON, 2007).
Partículas de vários gêneros dos poxvírus são morfologicamente semelhantes e as principais proteínas virais são consideradas conservadas em termos de estrutura e funcionamento (McFADDEN, 2005).

O ciclo tem início com a adsorção viral na membrana da célula hospedeira, todavia, pouco se conhece acerca dos ligantes virais e receptores celulares envolvidos no processo (MOSS, 2005). Há dois tipos de partículas infecciosas: vírus maduros (MVs) e vírus extracelulares (EVs). Partículas EV possuem duas membranas e, portanto, exigem um mecanismo de penetração celular diferente, uma vez que é requerida a disrupção da membrana mais externa (SCHMIDT et al., 2011). A partícula MV pode penetrar na célula através da fusão direta entre sua membrana com a membrana da célula (CARTER et al., 2005) ou alternativamente à fusão de membranas, MV e EV podem penetrar após a internalização endocítica, que necessita da acidificação dos compartimentos de endocitose. Após essa fase a membrana interna do EV, ou a membrana do MV, é exposta e pode então submeter-se a fusão com a membrana do macropinosossomo, resultando na liberação vírus para o citosol (SCHMIDT et al., 2011). Assim, embora as formas MV e EV possam interagir com diferentes proteínas na superfície da célula (VANDERPLASSCHEN et al., 1998), as vias de penetração convergem para a etapa de fusão do MV com a membrana da célula (TURNER et al., 2007). De fato, os MV e EV diferem nas suas glicoproteínas de superfície, mas acredita-se que os determinantes celulares para a ligação do vírus sejam ubiquitamente expressos, tais como as glicosaminoglicanas e os componentes da matriz extracelular (McFADDEN, 2005). Recentemente, foi demonstrado que dez proteínas de membrana do MV, conservadas entre os poxvírus, sejam requeridas para os processos de fusão/penetração, que culmina com a liberação do cerne viral no citoplasma ou desnudamento primário (McFADDEN, 2005; SENKENVICH et al., 2005; BROWN et al., 2006; TOWNSLEY, et al., 2006).

Após a adsorção, a partícula viral se funde com a membrana plasmática, liberando o cerne no citoplasma celular. A proteína A28 é altamente conservada entre os poxvírus, e parece estar envolvida no processo de fusão (SENKEVICH et al., 2003). O cerne viral é transportado sobre os microtúbulos para locais próximos ao núcleo, onde é iniciada a síntese da classe precoce
dos mRNA virais. Todas as proteínas necessárias para a síntese e maturação dos RNAs são empacotadas dentro do cerne viral junto com o genoma, como a RNA polimerase, fatores de transcrição, enzimas de metilação e “capping” (revisado por MOSS, 2006). Os mRNA precoces são transcritos ainda dentro do cerne e, em seguida, transportados sobre microtúbulos e organizados em estruturas granulares discretas em associação com fatores de tradução do hospedeiro e poli-ribossomos. Subsequentemente, proteínas virais precoces medeiam o desnudamento do cerne para liberar o genoma de DNA viral no citoplasma, processo denominado desnudamento secundário (revisado por SMITH et al., 2003; BROYLES, 2003).

A montagem das partículas virais começa com a formação de membranas na forma de luas crescentes (RODRIGUEZ et al., 2006) que originam aos vírus imaturos (IVs), partículas esféricas constituídas de membranas que envolvem uma estrutura eletrodensa. Os IVs são compostos por proteínas do cerne viral, enquanto que as membranas que os envolvem contêm as proteínas do MV. Os IVs então, englobam o genoma e formam os MVs (revisado por WARD, 2005; RODRIGUEZ et al., 2006), cuja maioria permanece dentro da célula até a lise. Entretanto, uma pequena fração de MVs deixa as fábricas, de maneira dependente de microtúbulos, e estas partículas tornam-se envolvidas por uma camada dupla de membranas, derivadas dos endossomos ou da rede de trans-Golgi, para formar os vírus envelopados (EVs). Estes, então, movem-se ao longo dos microtúbulos para a superfície da célula, onde o envelope mais externo se funde com a membrana plasmática, expondo as partículas virais envelopadas na superfície da mesma (revisado por WARD, 2005; SCHEPIS et al., 2006). Alguns destes são retidos na superfície da célula para formar os vírus envelopados célula-associado (CEVs) (uma variedade de EV), enquanto outros se dissociam da célula e se disseminam sistemicamente (revisado por SMITH et al., 2003; HUSAIN & MOSS, 2005).
1.4. *Orthopoxvirus* (OPXV)

Existem dez espécies de OPXV, que infectam um variado espectro de hospedeiros, com uma ampla distribuição geográfica. Dentre essas espécies, quatro têm sido associadas à infecções em seres humanos. A primeira delas é o *Variola virus* (VARV), agente etiológico da varíola humana, uma doença considerada erradicada pela Organização Mundial da Saúde (OMS). As outras três são espécies zoonóticas, incluindo o *Monkeypox virus* (MPXV), *Cowpox virus* (CPXV) e *Vaccinia virus* (VACV). Essas espécies estão associadas a surtos na África, Europa, América do Sul e Ásia (HOSAMANI et al., 2006; Zhang et al., 2010; ABRAHÃO et al., 2010).

Figura 4: Lesões típicas de varíola na face (4A) e membros inferiores (4B).

As inúmeras epidemias da varíola tiveram um grande impacto na história da saúde humana; e a descoberta e a promoção da vacinação contra a varíola proposta por Edward Jenner foi um marco significativo no desenvolvimento da ciência médica ocidental (HUGHES et al., 2010).

O Monkeypox virus (MPXV) tem uma epidemiologia mais complexa; dois subtipos geneticamente distintos desse vírus foram descritos com parâmetros clínicos e epidemiológicos. Alguns roedores endêmicos da África Central e Ocidental representam os reservatórios naturais deste vírus, enquanto o
homem e outros primatas constituem seus hospedeiros acidentais (McFADDEN, 2005). A primeira identificação de infecção por esse vírus foi feita em 1970 na África Central e Ocidental. O MPXV foi introduzido nos Estados Unidos em 2003 através de um lote de animais silvestres capturados no oeste africano na cidade de Gana (DAMON, 2007). Além disso, 37 casos de infecção em humanos foram confirmados e relatados recentemente nos Estados Unidos. MPXV foi isolado inicialmente a partir primatas não-humanos na Dinamarca, e mais tarde foi associado com a doença humana (revisado por EMERSON et al., 2009).

O Cowpox virus (CPXV) é um vírus encontrado na Europa e Ásia. Nos últimos anos, é crescente o número de casos notificados de infecção humana por CPXV, associada principalmente aos gatos (CORAS, 2005). Os felinos parecem exercer um importante papel de hospedeiro intermediário, transmitindo CPXV de roedores para os seres humanos, animais domésticos (cães e cavalos), e para animais habitantes de zoológicos (elefantes, rinocerontes, antas, edentatas e alguns carnívoros) (MARENNIKOVA, 1977; BAXBY, 1979; MEYER, 1998; PELKONEN, 2003). O primeiro caso de transmissão direta de CPXV de um roedor para um hospedeiro humano foi descrito em 2002, na Holanda, quando uma adolescente entrou em contato com um rato peridomesticário e apresentou lesões com nódulos ulcerados na face, como ilustrado na FIGURA 5 (WOLFS, 2002).
Figura 5: Lesões faciais causadas por infecção de *Cowpox virus* após contato com roedor peridomiciliar - Fonte: WOLFS, 2002.

O *Vaccinia virus* (VACV), durante décadas, foi utilizado para a imunização de seres humanos durante a campanha de erradicação da varíola. A sua origem e hospedeiros naturais permanecem desconhecidos. Sabe-se que o VACV é uma linhagem independente de OPXV, não sendo derivado recentemente do VARV ou do CPXV. Uma das hipóteses levantadas para se explicar a origem desses vírus é que eles seriam derivados de um OPXV raro ou mesmo já extinto, que em algum momento foi introduzido como amostra vacinal, dando origem aos VACV hoje conhecidos (*revisado por* FERREIRA, 2008).

Hoje, o VACV é usado em muitos laboratórios como um vetor para a produção de vacinas recombinantes capazes de expressar proteínas, tais como a glicoproteína do vírus da raiva ou de uma nova vacina contra a tuberculose (*revisado por* ESSBAUER, PFEFFER, MEYER, 2009).

O termo vaccinia bovina é, muitas vezes, utilizado popularmente para descrever uma doença exantemética causada pelo VACV no Brasil, caracterizada pelo aparecimento de lesões cutâneas em vacas e ordenhadores.
O Buffalo pox virus (BPXV), uma subespécie de VACV, foi pela primeira vez isolado em 1967 no Norte da Índia e ainda está associado a surtos esporádicos em búfalos asiáticos (Bubalus bubalis) no Paquistão, Índia, Bangladesh, Rússia, Indonésia, Egito e Itália. A doença é caracterizada por graves lesões locais que afetam o úbere e tetos de búfalos, levando a mastite e comprometendo assim a produtividade de leite (40-70% de redução) e, portanto, tendo um impacto sobre a indústria de laticínios (ESSBAUER; PFEFFER; MEYER, 2009).

1.5. Parapoxvirus (PPV)

Infecções por Parapoxvirus (PPV) são comuns em todo o mundo em animais como ovinos, caprinos e bovinos. Infecções humanas causadas por esses vírus são mais frequentes em profissionais que mantêm contato direto com animais infectados, embora em alguns casos a transmissão possa ocorrer por fômites. O International Committee on Taxonomy of Viruses (ICTV) reconhece as seguintes espécies como membros do gênero PPV: Orf virus (ORFV), vírus da Estomatite Papular Bovina (BPSV), Pseudocowpoxvirus (PCPV), e Parapoxvirus de cervos da Nova Zelândia (PVNZ). BPSV e PCPV são capazes de infectar bovinos, enquanto o ORFV causa infecções em ovinos e caprinos. BPSV, PCPV e ORF são considerados vírus zoonóticos (DAMON, 2007).

A inclusão de ORFV, PCPV, BPSV na classificação dos vírus do gênero PPV foi determinada por ensaios biológicos (HUCK, 1966), por sorologia (ROSENBUSCH e REED, 1983), por métodos de hibridização de DNA e padrão de restrição dos genomas virais (GASSMAN et al., 1985; MAZUR et al., 2000).

Os PPV induzem a formação de lesões pustulares ao redor da boca e narinas dos animais infectados. As lesões podem também desenvolver-se na pele ou mucosa de outras partes do corpo, como por exemplo, ombros, úbere e mucosa oral (VIKØREN et al., 2008).
Orf virus (ORFV), o protótipo do gênero PPV, é o agente etiológico do ectima contagioso, uma dermatite exantemática grave que acomete animais domésticos e pequenos ruminantes. Surtos de ectima contagioso em ovinos e caprinos já foram notificados na Noruega, Estados Unidos, China, Brasil, Oriente Médio, Nova Zelândia, dentre outras localidades (ABRAHÃO et al., 2009; ZHANG et al., 2010).

No Brasil, os surtos de ectima contagioso são notificados em todas as regiões geográficas, especialmente nas regiões Sul e Nordeste, onde há o maior número de rebanhos de ovinos e caprinos (ABRAHÃO et al., 2012).

O Pseudocowpox (PCPV) faz parte do gênero PPV. Infecções humanas com PCPV são geralmente chamadas de nódulo do ordenhador, enquanto a doença no gado leiteiro é conhecida como pseudocowpox (ABRAHÃO et al., 2010).

Embora pouco estudadas, co-infecções e co-circulação envolvendo OPVs e PPVs já foram descritas (FIGURA 6), podendo exercer um papel importante na epidemiologia e patogênese dos vírus pertencentes aos dois gêneros (ABRAHÃO et al., 2010).

Figura 6: Lesões causadas por uma coinfecção envolvendo VACV e PCPV. (A) Lesão exantemática no dedo de um paciente, adquirida após contato com gado que apresentava coinfecção: VACV/PCPV. (B) Lesão ulcerativa na teta de uma vaca que apresentava coinfecção: VACV/PCPV. Fonte: ABRAHÃO et al., 2010.
1.6. Ocorrência de *Orthopoxvirus* e *Parapoxvirus* no Brasil

No Brasil, vários poxvírus foram isolados desde o ano de 1960 e caracterizados como amostras de VACV (DRUMOND *et al.*., 2008). Desde 1999, vários surtos de VACV afetando o gado leiteiro e trabalhadores rurais foram notificados no sudeste do Brasil. Esta doença conhecida como vaccínia bovina (VB), causa perdas econômicas e impactos nos serviços de saúde pública nas regiões afetadas do Brasil (ABRAHÃO *et al.*, 2009)

As lesões (FIGURA 7) causadas pelo VACV apresentam-se nas formas proliferativas, ulceradas ou em crostas. Quando o VACV atinge a pele, observa-se o desenvolvimento de eritema cutâneo característico, que se inicia com o aparecimento de pequenas manchas, as quais evoluem para vesículas, pústulas, úlceras e crostas que terminam por cicatrizar (LOBATO *et al.*, 2005).
FIGURA 7: Exemplo de lesões causadas por Vaccinia virus durante surtos de VB no Brasil. (A) Lesões ulcerativas em tetas de vacas, e (B) no focinho de um bezerro. (C) e (D) lesões nas mãos de ordenhadores. Fonte: Madureira (2009) – modificado.

Pouco se sabe sobre a ocorrência e a ecologia do VACV no Brasil, uma vez que a maioria dos casos não são notificados. Os primeiros isolados verdadeiros de VACV zoonóticos, nomeados de Araçatuba e vírus Cantagalo, foram obtidos simultaneamente, em 1999, a partir de vacas doentes localizadas em regiões distintas no sudeste do Brasil. Posteriormente, vários casos deste tipo de infecção (bovina e humana) foram associados com surtos semelhantes em todo o país. Como conseqüência, de 1999 a 2010, vários outros isolados VACV foram obtidos de vacas infectadas ou seres humanos doentes, de muitas regiões diferentes em um padrão centrífugo. Estes novos isolados de VACV incluem os vírus Passatempo, Guarani P1 e P2 Guarani vírus, Muriaé e vírus Serro. Outro VACV, chamado Mariana vírus, foi isolado a partir de um roedor peridoméstico capturado durante um surto que foi investigado em 2005. Estes vírus foram caracterizados por técnicas biológicas e moleculares (TRINDADE
Notificações sobre pessoas e animais com os sinais e sintomas característicos da VB foram feitas em várias cidades do estado de Minas Gerais durante os últimos anos. O Instituto Mineiro de Agropecuária (IMA), juntamente com a Escola de Veterinária da UFMG, a Fundação Oswaldo Cruz (FIOCRUZ) e o Laboratório de Vírus da UFMG têm feito um levantamento das propriedades rurais da região e vêm alertando médicos e profissionais da saúde acerca das características e procedimentos clínicos da doença. Baseado em resultados de
testes de soroneutralização e diagnóstico viral por PCR foram confirmados surtos de VB causados por VACV em diversas propriedades rurais mineiras (dados não publicados) (LEITE et al., 2005; TRINDADE et al., 2007; LOBATO et al., 2005).

O estado de Minas Gerais é o maior produtor de leite do Brasil, com um rebanho de mais de 3,26 milhões de vacas leiteiras. Cerca de 70% do rebanho está localizado em áreas sob o risco de VB, e grande parte das amostras de VACV isoladas durante os surtos são derivadas desse estado. Além dos aspectos econômicos envolvidos na questão, a VB é uma zoonose emergente que requer atenção dos órgãos de saúde pública (LEITE et al., 2005; LOBATO et al., 2005).

Existem poucos dados epidemiológicos sobre o PCPV no Brasil, e na grande maioria das notificações de surtos o diagnóstico foi baseado em sinais clínicos. Em 2010, Abrahão et al. descreveu um caso humano de coinfeccção de PCPV e VACV. Apesar dos dados moleculares não terem indicado a provável origem deste PCPV o relato de caso reforçou que o PCPV circula ativamente no Brasil (ABRAHÃO et al., 2010). Outro PPV que circula no território nacional é o ORFV causando surtos em ovinos e caprinos. Notificações de ectima contagioso (EC) foram registradas em vários estados, incluindo Mato Grosso, Pernambuco, Minas Gerais, Rio Grande do Sul, dentre outros (ABRAHÃO et al., 2010; MAZUR et al., 2000)

1.7. Testes de diagnósticos para Orthopoxvirus e Parapoxvirus

O diagnóstico das infecções OPV envolvem técnicas clínicas, sorológicas, microscópicas e moleculares. OPV zoonóticos tem o potencial para causar vesículas pustulares locais ou disseminadas e a infecção provoca uma forte resposta imune humoral. Devido a esta resposta, anticorpos anti-OPV podem ser detectados por ELISA, imuno-fluorescência ou testes de soroneutralização vários dias após a infecção inicial (ABRAHÃO et al., 2010).
Outra forma de visualizar e identificar os vírus dos gêneros OPV é através da microscopia de força atômica (AFM) a qual permite a discriminação de vírus com base no tamanho e forma em um processo que não exige marcação, fixação ou de outras preparações sintéticas. Esta técnica tem sido usada com sucesso para diagnosticar várias infecções virais. A estrutura intracelular VACV (WR), o protótipo da família poxvírus, já foi visualizado por AFM in situ (TRINDADE et al., 2007).

Para a detecção e caracterização molecular dos VACV circulantes no Brasil vêm sendo empregada a reação em cadeia da polimerase, associada a análises filogenéticas e perfis de restrição. Vários genes vêm sendo utilizados para este fim, como o gene do fator de crescimento de *Vaccinia virus* (*vgf*), o gene da timidina quinase (*tk*), gene do corpúsculo de inclusão do tipo-acidófilo (*ati*), entre outros. A PCR permite a detecção do DNA dos poxvírus a partir de células cultivadas *in vitro* e MCA previamente infectadas, assim como diretamente de material clínico, como crostas coletadas durante surtos de variola bovina (TRINDADE et al., 2003).

Já existe uma lista de protocolos de PCR em tempo real utilizados para identificar PPV e OPV disponíveis atualmente, embora nenhum deles permita a identificação simultânea de vírus dos dois gêneros. Diante dos emergentes poxvírus zoonóticos em todo o mundo e a possibilidade da volta do vírus da variola, vários ensaios de PCRs em tempo real para espécies de OPV têm sido publicados. Alguns ensaios são genéricos e alguns específicos, desenvolvidos, principalmente, para a detecção do vírus da variola e outras OPV zoonóticos como MPXV, CPVX e VACV (TRINDADE et al., 2008).

Nos últimos anos, vários surtos de ORFV, PCPV e BSPV ocorreram em todo o mundo. Embora o diagnóstico clínico e microscopia eletrônica sejam utilizados para identificação viral, só PCR e análise genômica podem distinguir as espécies PPV. O principal gene utilizado na PCR e em análise filogenéticas para identificação de PPV é o *b2l*, uma glicoproteína presente na membrana do vírus (INOSHIMA et al., 2000).
Clinicamente, as lesões causadas por espécies zoonóticas de OPV e PPV são muito semelhantes, especialmente em seres humanos e bovinos, então, faz-se necessário a padronização de métodos diagnósticos diferenciais, rápidos e eficientes capazes de diagnosticar uma possível coinfeção por vírus desses gêneros.
2. JUSTIFICATIVA

Uma deliberação importante, que seria considerada impossível por muitos especialistas, ocorreu em maio de 1980. A Assembleia Mundial da Saúde, organizada pela Organização Mundial de Saúde em Gênova, declarou que a varíola humana havia sido erradicada. O fim de uma doença extremamente letal foi comemorado por muitos médicos, políticos e cientistas, na expectativa de que as futuras gerações estariam agora livres da dor, morte, mutilação que a varíola havia imposto no passado (Reflections on the eradication of smallpox, 2010). Porém, com a consolidação da possibilidade de utilização do Variola virus como arma biológica, sobretudo após os ataques terroristas de 11 de setembro de 2001, é grande a preocupação dos órgãos de Segurança e Saúde Pública acerca do uso do Variola virus como arma biológica (BREMAN & HENDERSON, 2002).

Um número crescente de amostras de VACV vem sendo isoladas durante surtos de vaccínia bovina (VB) no Brasil, sobretudo em Minas Gerais, o maior produtor de leite do país. A doença causa lesões ulcerativas no gado leiteiro e em ordenhadores, podendo causar uma série de sintomas e sinais clínicos. Durante o episódio da doença, o gado apresenta queda na produção de leite, e o ordenhador normalmente é afastado do serviço por alguns dias, acarretando grandes perdas econômicas. A VB também constitui um problema social, pois as pequenas propriedades são as mais atingidas pela doença, sobretudo as que praticam a ordenha de subsistência e que o leite representa um dos pilares da alimentação familiar (revisado por Abrahao, 2006). Além disso, é crescente o número de doenças exantemáticas causadas por PPV nas áreas rurais brasileiras com sinais clínicos muito semelhantes aos observados durante os surtos de VB.

O aumento da co-circulação ativa destes vírus (dos gêneros Orthopoxvirus e Parapoxvirus) na população, permitindo o estabelecimento destas zoonoses, pode levar a um aumento na sua virulência e na sua capacidade de transmissão (McFADDEN, 2005).
Desta forma, considerando todos os impactos causados pela circulação dos poxvírus em todo o mundo, especialmente no Brasil, e a escassez de dados sobre aspectos importantes da biologia desses vírus, a busca por ferramentas moleculares que viabilizem e facilitem os estudos sobre os poxvírus se torna imprescindível. Com isso, a padronização de uma técnica sensível e específica como o método da PCR capaz de detectar simultaneamente a presença de espécies virais dos gêneros, *Orthopoxvirus* e *Parapoxvirus*, em diferentes espécimes clínicos torna-se necessário.
3. OBJETIVOS

3.1. Objetivo Geral

Padronizar e desenvolver uma reação em cadeia da polimerase (PCR) capaz de detectar simultaneamente a presença de *Orthopoxvirus* e *Parapoxvirus* em espécimes clínicos bovinos, caprinos, ovinos e humanos, sem extração prévia de DNA.

3.2. Objetivos Específicos

- Padronizar uma PCR do tipo nested-multiplex para a detecção de *Orthopoxvirus* e *Parapoxvirus* utilizando iniciadores capazes de amplificar os genes conservados *vgf* (OPV) e *b2l* (PPV).
- Testar a sensibilidade e especificidade da PCR na detecção de DNA viral em espécimes clínicos;
- Testar a aplicabilidade da PCR na detecção de DNA viral em espécimes clínicos coletados em surtos de vaccínia bovina e ectima contagioso no Brasil.
4. MATERIAIS E MÉTODOS

4.1. Células Vero

As células Vero, de linhagem contínua de células epiteliais derivadas de rim de macaco verde africano (*Cercopthiscus aethiops*) foram obtidas na passagem 126 da “American Type Culture Collection” (ATCC). Essas células foram crescidas em meio mínimo de Eagle (MEM) suplementado com 5% de soro fetal bovino (SFB), na presença dos antibióticos penicilina (200.000U/mL), gentamicina (50mg/L) e fungizona (2.5mg/L), e incubadas a 37°C em ambiente de 5% de CO₂. As células foram utilizadas para a determinação dos títulos dos estoques das amostras virais utilizadas.

4.2. Vírus

4.2.1. Origem das amostras

As amostras brasileiras de vírus que causam vaccínia bovina (VB) e ectima contagioso (EC) utilizadas neste estudo estão descritas na tabela abaixo:
Tabela 2: Amostras brasileiras utilizadas no estudo

<table>
<thead>
<tr>
<th>Amostras</th>
<th>Origem: Estado/ Ano</th>
<th>Nº de Amostras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vírus Guarani P1 (GP1V)</td>
<td>Bovinos</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Guarani P2 (GP2V)</td>
<td>Bovinos</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Serro (SV)</td>
<td>Bovinos e Humanos</td>
<td>11</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Passatempo (PSTV)</td>
<td>Bovino</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Mariana (MARV)</td>
<td>Bovinos e Humanos</td>
<td>13</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Resplendor (RPLV)</td>
<td>Bovinos e Humanos</td>
<td>5</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Jequeri (JQRV)</td>
<td>Bovinos e Humanos</td>
<td>8</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF - MT05</td>
<td>Ovino</td>
<td>5</td>
</tr>
<tr>
<td>Mato Grosso, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Linhares (LINV)</td>
<td>Bovinos e Humanos</td>
<td>4</td>
</tr>
<tr>
<td>Espírito Santo, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Paraguaçu (PGRV)</td>
<td>Humanos</td>
<td>8</td>
</tr>
<tr>
<td>Minas Gerais, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vírus Argirita (ARGV)</td>
<td>Humanos</td>
<td>4</td>
</tr>
<tr>
<td>Minas Gerais, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF - A</td>
<td>Caprinos</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF - NE1</td>
<td>Caprinos</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORF - NE2</td>
<td>Caprinos</td>
<td>1</td>
</tr>
<tr>
<td>Minas Gerais, 1993</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As amostras virais GP1V, GP2V e SV foram coletadas em surtos no Estado de Minas Gerais no ano de 2005 e cedidas pela Dra. Giliane Trindade, UFMG.

A amostra PSTV foi cedida pela Dra. Juliana Leite, FIOCRUZ-RJ, enquanto as amostras MARV, RPLV, JQRV, ORF – MT05, LINV, PRGV e ARGV foram cedidas pela Dra. Erna Kroon, UFMG.

As amostras ORF – A, ORF – NE1 e ORF – NE2 foram cordialmente cedidas pelo Dr. Carlos Mazur, UFRJ.

Além das amostras brasileiras, foi utilizada a amostra Vaccinia virus Western Reserve (WR), gentilmente cedida pelo Dr. C. Jungwirth (Universität Würzburg, Alemanha).

4.3. Reação em cadeia da polimerase (PCR)

4.3.1. Padronização de uma PCR nested multiplex para a detecção de Orthopoxvirus e Parapoxvirus.

Baseado em estudos que enfatizam o potencial da PCR nested como ferramenta molecular para a amplificação de seqüências nucleotídicas específicas, sobretudo em espécimes clínicos com alto teor de inibidores (PEREIRA, 2001; INOSHIMA et al., 2000), uma reação deste tipo foi padronizada para a detecção de espécies virais dos gêneros Orthopoxvirus (OPV) e Parapoxvirus (PPV). Para isso, foram usados diferentes iniciadores específicos para a amplificação dos vírus dos gêneros OPV e PPV. Foram utilizados iniciadores para os genes do corpúsculo de iniciação do tipo acidófilo (ati), para o gene da timidina (tk) e para o gene do fator de crescimento viral (vgf); todas para a amplificação de sequências de OPV. As sequências e a esquematização das reações feitas com estes iniciadores estão apresentadas nos diagramas abaixo:
Gênero *Orthopoxvirus*:

Gene: ati

1ª etapa: *atiF1*: 5' GAACTTAATAAGTGGTTTCGATA 3'

atiR: 5' CAGTAACGTGGACGATGGAGG 3'

2ª etapa: *atiF2*: 5' GAGGAAGTTAAGAGATTGCCTG 3'

atiR: 5' CAGTAACGTGGACGATGGAGG 3'

Gene: tk

1ª etapa: *tkF1*: 5' TTATTTGAAGTATTCCGTGTATTC 3'

tkR: 5' ATTCAACAATGTCTGGAAAGAACTG 3'

2ª etapa: *tkF2*: 5' CTATTGATAGATTACGACGTCTA 3'

tkR: 5' ATTCAACAATGTCTGGAAAGAACTG 3'
Gene: vgf

1ª etapa: vgfF: 5’ CGCTGCTATGATAATCAGATCATT 3’
vgfR: 5’ GATATGGTTGTG GCCATAA TTTTAT 3’

2ª etapa: vgfF2: 5’ ACACGGTGACTGTACCA 3’
vgfR2: 5’ CT AATACAAGCATAATAC 3’

As reações para detecção de vírus do gênero PPV foram padronizadas somente com iniciadores que amplificam o gene b2l, uma vez que análises prévias feitas no Laboratório de Vírus da Universidade Federal de Minas Gerais demonstraram que o gene b2l é o mais conservado entre as espécies virais deste gênero. Foram testados dois sets de primers para b2l, conforme os diagramas abaixo:
Gênero Parapoxvirus

Gene: b2l (iniciadores ppp1, 3 e 4)

1ª etapa: **ppp1**: 5' GTCGTCCACGATGAGCAG 3'

ppp4: 5' TACGTGGGAAGCGCCTCGCT 3'

2ª etapa: **ppp3**: 5' GCGAGTCCGAGAAAGAATACG 3'

ppp4: 5' TACGTGGGAAGCGCCTCGCT 3'

Gene: b2l (iniciadores ovb2l e ppp1/4)

1ª etapa: **ovb2lF1**: 5' TCCCTGAAGCCCTATTATTTTTGT 3'

ovb2lR1: 5' GCTTGCGGGCGTTCGGACCTTC 3'

2ª etapa: **ppp1**: 5' GTCGTCCACGATGAGCAG 3'

ppp4: 5' TACGTGGGAAGCGCCTCGCT 3'

Nessas reações foram utilizados 1,6mM de MgCl₂, 0,4mM dos nucleotídeos (dATP, dCTP, dGTP e dTTP), 2U de Taq DNA polimerase (Promega), 2,0µL de
Tampão 10X de *Taq* polimerase, 500ng de BSA (albumina sérica bovina) e 2,0µL de amostra clínica. Os mesmos reagentes foram utilizados na reação de 2ª etapa. Em cada análise houve a variação da concentração e o tipo de iniciadores. Todas as PCRs foram processadas no aparelho Perkin Elmer Cetus (Perkin, USA), modelo N 801-150.

Os fragmentos amplificados foram fracionados eletroforeticamente em gel de poliacrilamida (PAGE) 8%, sob voltagem de 100V e corados pela prata. A seleção da melhor combinação de condições da PCR nested - multiplex foi feita baseada na intensidade da banda correspondente ao fragmento específico desejado.

4.4. Teste de Sensibilidade da PCR nested – multiplex

Para a realização do teste de sensibilidade os genes de interesse foram clonados no plasmídeo pGEM-T e posteriormente extraídos com o kit Minipreps Plasmid Extration Kit, Promega – USA. Após a extração o material foi quantificado no aparelho Nanogrop 1000 (Uniscience, Brasil). O processo foi realizado previamente no Laboratório de Vírus da Universidade Federal de Minas Gerais. Após a quantificação foram feitas alíquotas dos plasmídeos em diferentes concentrações, no volume de 2,0 µL: 50ng, 25ng, 10ng, 5ng, 2ng e 1ng. Este material foi submetido a PCR nested – multiplex sob as melhores condições selecionadas. A sensibilidade da PCR nested – multiplex foi definida pela detecção de DNA viral na reação na qual foi utilizada a menor concentração de DNA como amostra. Os fragmentos amplificados foram fracionados eletroforeticamente em gel de poliacrilamida (PAGE) 8%, sob voltagem de 100V e corados pela prata.

4.5. Teste Aplicabilidade e especificidade da técnica
Amostras de líquido vesicular e crostas provenientes de bovinos e coletados durante surtos de vaccínia bovina (VB) e ectima contagioso (EC) foram cedidas ao Laboratório de Vírus da Universidade Federal de Minas Gerais – UFMG e utilizadas para avaliar a técnica proposta. As amostras foram refrigeradas e transportadas para o laboratório sendo então armazenadas a -70 °C até a data do processo de amplificação pela PCR. Para a realização dos testes as amostras foram descongeladas e então maceradas em PBS. O macerado foi aliquotado em microtúbulos de 1,5 mL e armazenados a –20 °C. A cada teste realizado aliquotas foram descongeladas e centrífugadas por 1 minuto a 5000 g. Após a centrífugação 1 µL do sobrenadante foi coletado e utilizado como amostra na PCR nested – multiplex.

Foram analisadas 65 amostras clínicas, descritos na TABELA 2, item 4.2.1., sendo 56 coletadas durante surtos de VB, dentre estas 36 amostras bovinas e 20 de humanos; e 8 amostras coletadas durante surtos de EC, dentre estas, 3 de caprinos e 5 de ovinos.

Com a finalidade de confirmar a especificidade da PCR nested – multiplex outras amostras de infecções exantemáticas foram submetidas a este método: crosta bovinas causadas por Herpes virus bovino, gentilmente cedidas pela Dra. Z. Lobato da UFMG e uma amostra de Staphylococcus aureus, isolada de uma paciente acometida por infecção hospitalar no estado de Santa Catarina foi cedida pela Dra. L. Parucker, da Universidade Federal de Santa Catarina.
5. RESULTADOS

5.1. Reação em cadeia da polimerase (PCR)

5.1.1. Padronização da PCR nested – multiplex

Varias condições foram avaliadas na padronização da PCR nested – multiplex. Foram testados os sets de primers \textit{ati+ovb2l/ppp}, para identificação de OPV e PPV, respectivamente porém após o fracionamento dos fragmentos por eletroforese em gel de poliacrilamida (PAGE) 8% e a coloração de prata foi possível observar a ocorrência de fragmentos de tamanho não esperado, provavelmente em decorrência da amplificação inespecífica de fragmentos genômicos de ambos os vírus. A combinação dos sets de primers \textit{tk+ovb2l/ppp}, para identificação de OPV e PPV, também não foi bem sucedida, pois a diferença de temperatura dos primers durante a etapa de pareamento não propiciou a amplificação dos fragmentos desejados. A melhor amplificação obtida foi com a utilização dos iniciadores \textit{vgfF1/ vgfR1} e \textit{vgfF2/ vgfR2} para OPV e \textit{ovb2IF1/ ovb2IR1} e \textit{ppp-1/ ppp-4} para PPV, onde os fragmentos amplificados puderam ser visualizados e posteriormente confirmados com seqüenciamento. Os sets de primers escolhidos estão disponíveis na TABELA abaixo. Reações envolvendo \textit{tk}, assim como qualquer outra combinação, apresentaram problemas na sensibilidade e/ou especificidade.
Tabela 3: Relação dos iniciadores de OPV/PPV utilizados na padronização da PCR nested-multiplex.

<table>
<thead>
<tr>
<th>Gênero</th>
<th>Gene</th>
<th>Sequências de primers (5' – 3')</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPV</td>
<td>vgf</td>
<td>1ª etapa
<code>vgfF</code>: CGCTGCTATGATAATCA GATCATT
<code>vgfR</code>: GATATGGTTGTGCCATA ATTTTTAT</td>
<td>Fonseca et al, 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2ª etapa – nested
<code>vgfF2</code>: ACACGGTGACTGTATCC A</td>
<td>O presente estudo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPV</td>
<td>b2l</td>
<td>1ª etapa
<code>OVB2LF1</code>: TCCCTGAAGCCCTATTA TTTTTGT
<code>OVB2LR1</code>: GCTTGCGGGCGTTCGG ACCTTC</td>
<td>Hosamani et al., 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2ª etapa – nested
<code>PPP-1</code>: GTCGTCCACGATGAGCA G</td>
<td>Inoshima et al., 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2ª etapa – nested
<code>PPP-4</code>: TACGTGGGAAGCGCCTC GCT</td>
<td></td>
</tr>
</tbody>
</table>

Baseado na intensidade e especificidade dos fragmentos obtidos nos testes de padronização representado na FIGURA 9, as seguintes condições foram selecionadas para execução das PCR nested – multiplex para a amplificação do gene *vgf* e *b2l*: 1ª Reação: 95°C por 9 minutos; 30 ciclos de desnaturação de 94°C por 1 minuto; pareamento de 45°C por 1 minuto e uma extensão de...
72°C por 1 minuto; seguido de uma extensão final de 72°C por 10 minutos. O volume de 2µL desta 1ª reação foi utilizado, sem diluição, como amostra na 2ª reação, sob as mesmas condições térmicas.

Nas canaletas 1, 2 e 3 foram adicionadas as amostras de crostas e vesículas de OPV oriundas de surtos de vaccínia bovina (VB) amplificadas pelo gene vgf a qual apresenta uma banda de 170 pb; nas canaletas 4, 5 e 6 estão representadas amostras de crostas de PPV coletadas de surtos de ectima contagioso (EC) amplificados pelo gene b2l apresentando uma banda de 592 pb. A canaleta 7 apresenta o controle negativo, onde não foi observada amplificação. As canaletas 8 e 9 representam uma simulação de coinfeção por OPV e PPV adicionando em um mesmo recipiente amostras de crostas de ambas as espécies (VACV e ORFV) sendo, então, submetida a PCR nested – multiplex; foram observadas bandas de 170 pb e 592 pb através da amplificação dos genes vgf e b2l, respectivamente.

Figura 9: Padrãoização da PCR nested – multiplex para a detecção de OPV/PPV. As amostras utilizadas foram coletadas em surtos de VB e EC. Nas canaletas 1, 2 e 3 foram adicionadas as amostras de crostas e vesículas de OPV oriundas de surtos de vaccínia bovina (VB) amplificadas pelo gene vgf a qual apresenta uma banda de 170 pb; nas canaletas 4, 5 e 6 estão representadas amostras de crostas de PPV coletadas de surtos de ectima contagioso amplificados pelo gene b2l apresentando uma banda de 592 pb. A canaleta 7 apresenta o controle negativo, onde não foi observada amplificação.
As canaletas 8 e 9 representam uma simulação de coinfeccão por OPV e PPV. As amostras foram fracionadas a 100V em PAGE 8% e coradas pela prata.

5.2. Testes de sensibilidade e especificidade da PCR

As figuras 10A e 10B demonstram a sensibilidade da PCR nested – multiplex através de testes utilizando plasmídeos pGEM-T clonados com os genes vgf ou b2l. As concentrações utilizadas para o teste de sensibilidade da PCR nested-multiplex para os genes vgf e b2l foram de 50ng, 25ng, 10ng, 5ng, 2ng e 1ng; as amostras foram fracionadas a 100V em PAGE 8% e coradas pela prata. A PCR nested – multiplex foi capaz de amplificar os genes vgf ou b2l até mesmo nas reações nas quais foi utilizado como amostra 1ng do fragmento gênico clonado.
Figura 10: Teste de sensibilidade da PCR nested – multiplex. Fragmentos de vgf e b2l obtidos através da clonagem em p-GEMT foram submetidos a PCR nested – multiplex em diferentes concentrações. A 1ª canaleta está representada com padrão de tamanho molecular de 1Kb. As canaletas de 2 a 7 estão mostrando as diluições de 50ng a 1ng. A última canaleta representa o controle negativo. As amostras foram fracionadas a 100V em PAGE 8% e coradas pela prata.

A avaliação da especificidade da PCR nested – multiplex foi realizada com amostras clínicas contendo herpes vírus bovino e Staphylococcus aureus. Estas reações ao serem fracionadas a 100V em PAGE 8% e coradas pela prata não apresentaram amplificação dos fragmentos específicos esperados.
5.3. PCR nested – multiplex PCR para a detecção de *Orthopoxvirus* e *Parapoxvirus* em espécimes clínicos coletados de surtos ocorridos no Brasil

Foram utilizadas 65 amostras clínicas coletadas em surtos de vaccínia bovina e ectrma contagioso para testar a aplicabilidade da PCR nested – multiplex. Todas estas amostras foram previamente testadas por métodos moleculares e foram confirmadas as infecções por VACV nos surtos de VB e por ORFV nos surtos de EC. Dentre as amostras clínicas obtidas de surtos de BV, a PCR nested – multiplex foi capaz de detectar DNA viral de OPV em 53 crostas ou vesículas, apresentando uma positividade de 93,9%. Nas análises envolvendo amostras clínicas de PPV a multiplex foi capaz de detectar DNA viral em 100% das amostras. A TABELA 3 sumariza os testes de aplicabilidade da PCR nested – multiplex OPV/PPV.

<table>
<thead>
<tr>
<th>Estado/ Ano</th>
<th>Nº de amostras analisadas</th>
<th>Amostras</th>
<th>Nº de amostras positivas</th>
<th>Resultado</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minas Gerais, 2005</td>
<td>2</td>
<td>Crosta</td>
<td>2</td>
<td>OPV</td>
<td>Trindade et al, 2006</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td>11</td>
<td>Crosta e lesões vesiculares</td>
<td>10</td>
<td>OPV</td>
<td>Trindade et al, 2007</td>
</tr>
<tr>
<td>Minas Gerais, 2003</td>
<td>1</td>
<td>Crosta</td>
<td>1</td>
<td>OPV</td>
<td>Leite et al, 2005</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td>13</td>
<td>Crosta e lesões vesiculares</td>
<td>11</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Espírito Santos, 2008</td>
<td>5</td>
<td>Crosta e lesões vesiculares</td>
<td>5</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td>5</td>
<td>Crosta e lesões vesiculares</td>
<td>5</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Minas Gerais, 2005</td>
<td>8</td>
<td>Crosta e lesões vesiculares</td>
<td>7</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Minas Gerais, 2008</td>
<td>8</td>
<td>Crosta</td>
<td>8</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Minas Gerais, 2008</td>
<td>4</td>
<td>Lesões vesiculares</td>
<td>4</td>
<td>OPV</td>
<td>dados não publicados</td>
</tr>
<tr>
<td>Minas Gerais, 1990</td>
<td>1</td>
<td>Crosta</td>
<td>1</td>
<td>PPV</td>
<td>Mazur e Machado, 1990</td>
</tr>
<tr>
<td>Pernambuco, 1993</td>
<td>2</td>
<td>Crosta</td>
<td>2</td>
<td>PPV</td>
<td>Mazur et al, 2000</td>
</tr>
<tr>
<td>Mato Grosso, 2005</td>
<td>5</td>
<td>Crosta</td>
<td>5</td>
<td>PPV</td>
<td>Abrahao et al, 2009</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>Total: 65</td>
<td></td>
<td>Positividade: 61 amostras (93,9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. CONCLUSÕES

A elaboração da PCR nested – multiplex foi baseado em aspectos importantes e em estudos realizados no Brasil e em outros países onde a infecção por Orthopoxvirus e Parapoxvirus vem aumentando a cada dia, além da possibilidade de coinfecção por essas espécies.

Um número crescente de amostras de VACV vem sendo isoladas durante surtos de vaccínia bovina (VB) no Brasil, sobretudo em Minas Gerais, o maior produtor de leite do país. Durante o episódio da doença, o gado apresenta queda na produção de leite, e o ordenhador normalmente é afastado do serviço por alguns dias, acarretando grandes perdas econômicas. A VB também constitui um problema de saúde publica já os aspectos clínicos da doença são confundidos com doenças causadas por fungos e bactérias além de ser uma preocupação social, pois as pequenas propriedades são as mais atingidas pela doença, sobretudo as que praticam a ordenha de subsistência e que o leite representa um dos pilares da alimentação familiar.

A reação em cadeia da polimerase (PCR) é uma metodologia utilizada em laboratórios de diagnostico e pesquisa, pois, em poucas horas, são obtidas milhares de cópias da sequência alvo, que podem então ser detectadas e identificadas. O emprego de uma desnaturação inicial de 9 minutos, a 95°C, além de separar as dupla-hélices das fitas de DNA presentes na solução, causa também o rompimento das membranas e do cerne viral, expondo o genoma do vírus à ação da enzima Taq polimerase. Esse procedimento eliminou a necessidade de extração prévia de DNA dos espécimes clínicos, o que tornaria o processo mais laborioso, e poderia reduzir a quantidade de genomas virais disponíveis. A grande maioria dos protocolos de PCR atualmente descritos para a detecção de DNA de microorganismos a partir de espécimes clínicos realizam previamente a extração de ácidos nucléicos, para evitar a ação de inibidores da PCR (KUIPER et al, 2006, CUMMINGS et al, 2004; SAVONA et al, 2006).
A técnica proposta neste estudo é capaz de detectar simultaneamente OPV e PPV com alta especificidade através da análise dos fragmentos resolvidos em géis de poliacrilamida 8% e corados em prata. A sensibilidade da PCR nested – multiplex também é alta sendo possível detectar até 1 ng de DNA viral seja de OPV ou PPV através da amplificação dos genes v gf e b 2l, respectivamente. A detecção de espécies de ambos os gêneros trás para os laboratórios uma economia de tempo e custos do processo quando comparados a PCR tradicional, onde a detecção desses patógenos se dá separadamente.
7. REFERÊNCIA BIBLIOGRÁFICA

VANDERPLASSCHEN, A., E. MATHEW, M. HOLLINSHEAD, R. B. SIM e SMITH, G. L.. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins
VIKØREN, T., LILLEHAUG, A., KERSTEDT, J.A., Tord BRETTEM, T.,
HAUGUM, M., TRYLAND, M. A severe outbreak of contagious ecthyma
(orf) in a free-ranging musk ox (Ovibos moschatus) population in Norway.
WARD, B. M. The longest micron; transporting poxviruses out of the cell. Cell
WOLFS, T.F., WAGENAAR, J.A., NIESTERS, H.G. & OSTERHAUS, A.D. Rat-
to-human transmission of cowpox infection. Emerg Infect Dis 8, 1495-
1496. 2002.
J 2010, 7:78.